
Microeconomics
Notes on Production Theory

gianluca.damiani@carloalberto.org

July 19, 2023

1 Production Sets
Production theory refers to the supply side of the economy. This side is made up of a
series of productive units, called "firms", of which only what can they do is of interest.
Then the firm is seen merely as a "black box", able to transform inputs in outputs.

Let’s consider an economy with L commodities. A Production Vector is a vector
y = (y1, . . . yL) ∈ RL that describes the net outputs of the L commodities from the
production process. A convention is that of writing the positive numbers in the vector
as outputs, and the negative as inputs.

The set of feasible production vectors from which feasible plans can be arranged is
known as the Production Set, Y ⊂ RL. Any y ∈ Y is possible. This set is primarily
limited by technological constraints.

This set can also be described by using a function, called Transformation Function:

Y = {y ∈ RL : F (y) ≥ 0}
Furthermore, F(.) = 0 if and only if y is a boundary element of Y , that is an element

of the Transformation Frontier of Y . These are represented in Figure 1.
If F (.) is differentiable, and if ȳ belongs to the transformation frontier (i.e. F (ȳ) = 0,

then, for any commodities l and k, we can write the Marginal Rate of Transformation
of good k for good l at ȳ:

MRTl,k(ȳ) =

∂F (ȳ)
∂yl
∂F (ȳ
∂yk

This represents how much the net output of good k can increase if the firm decreases
the net output of good l by one marginal unit. The slope of the transformation frontier
at ȳ in Figure 1 is −MRT1,2(ȳ).

We can describe any production model in terms of output-technology, that is by
using the idea of Production Function f(z) (in the case of a single output). This gives the
maximum amount of output that can be produced by using inputs (z1, . . . , zL− 1) ≥ 0.
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Figure 1: The Production Set and the Transformation Frontier

Holding fixed the level of output, we can define the Marginal Rate of Technical
Substitution of input l for input k at z̄, as follows:

MRTSl,k(z̄) =

∂f(z̄)
∂zl
∂f(z̄
∂zk

This represents the additional amount of input k that must be used to keep the
output at the level q̄ = f(z̄), when the amount of l is decreased marginally. This is
for production theory the analogous of the Marginal Rate of Substitution in Consumer
Theory, whereas in the latter the utility level was aimed to be kept constant. The
MRTS is a renaming of the MRT in the case of a single output-many input technology.

The Production Sets have a series of commonly assumed properties.

1. Y is non-empty

2. Y is closed: i.e, Y contains its boundary. The limit of a sequence made up of
yn ∈ Y is still in Y .

3. No Free-Lunch: if y ∈ Y and y ≥ 0. This property says that y cannot produce
any output either.

4. Possibility of Inaction: 0 ∈ Y . In words, complete shutdown is possible.

5. Free Disposal: if y ∈ Y and y′ ≥ y, then y′ ∈ Y . In words, an extra-amount of
inputs, or outputs, can be eliminated without any cost.
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Figure 2: Non-Increasing Returns to Scale

6. Irreversibility: if y ∈ Y and y ̸= 0. Then −y ̸= Y . It is impossible to transform an
amount of output into the same amount of input that has been used to generate
it.

7. Non-increasing Returns to Scale: if for any y ∈ Y , we have αy ∈ Y for all
α ∈ [0, 1]. See Figure 2

8. Nondecreasing Returns to Scale: if for any y ∈ Y , we have αy ∈ Y for all α > 1.
See Figure 3

9. Constant Return to Scale: if for any y ∈ Y , we have αy ∈ Y for all α > 0. This
means that Y is a Cone. See Figure 4

10. Additivity (or Free-Entry): suppose that y ∈ Y and y′ ∈ Y . Then also y′+y ∈ Y .
That is, for instance, that ky ∈ Y for any k ∈ N .

11. Convexity: this means that a production set is a convex set. If y, y′ ∈ Y and
α ∈ [0, 1] then αy + (1− α)y′ ∈ Y .

12. Y is a convex cone: this derives from the conjuction between convexity and con-
stant returns to scale (see Figure 4 again). Y is a Convex Cone if, for any pro-
duction vector y, y′ ∈ Y and constants α ≥ 0 and β ≥ 0, we have αy + βy′ ∈ Y .

From these properties two results derive. First, differently from consumer theory,
when from convex preferences derive a quasi-concave utility function (as well as a convex
demand set), in the case of production, for a single-output technology, if the production
function f(z) is concave, then the production set Y is convex.

The second, is a proposition:

Proposition 1 (MWG 5B1). The production set Y is additive and satisfies the non-
increasing returns condition if and only if it is a convex cone.
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Figure 3: Non-Decreasing Returns to Scale
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Figure 4: Constant Returns to Scale
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Proof. The definition of a convex cone directly implies the non-increasing returns and
additivity properties. Let’s show that if nonincreasing returns and additivity hold,
then for any y, y′ ∈ Y and α > 0, and β > 0m we have αy + βy′ ∈ Y . Let k be any
integer such that k > maxα, β. By additivity, ky ∈ Y and k′y ∈ Y . Since α

β
< 1 and

αy = (α
k
· ky, by the definition of non-increasing returns, αy ∈ Y . Similar for βy′. And,

by additivity αy + βy′ ∈ Y

2 The Profit Maximization Problem
As in the study of the consumer demand, we assume that there is a vector of prices
for the L goods, p = (p1, . . . pL) >> 0, and that these prices are independent of the
production plans of each firm (price-taking assumption.

Letting aside all other issues concerning the institutional role of the firm, throughout
this theory we assume that firms are only profit maximizers, and that Y satisfies non-
emptiness, closedeness and free-disposal.

We can write the Profit Maximization Problem (PMP ) as follows. Given a price
vector p >> 0 and a production vector y ∈ RL, we can write the firm’s Problem as
follows:

max
y

p · y s.t. y ∈ Y

In the simplest case, of only one output, we can write:

max
z≥0

p · f(z)− w · z (1)

The z∗ maximizes profits given (p, w) if it solves the problem above. The F.O.C.
are:

p
∂f(z∗)

∂zl
≥ wl

With equality if z∗l > 0. In words, the marginal product of every input l actually
used must equal its prices in terms of output wl

p
.

In the case of two inputs l, k, and (z∗l , z
∗
k) >> 0, the F.O.C implies that the

MRTSl,k =
wl

wk
. That is:

∂f(z∗)
∂xl

∂f(x∗)
∂zk

=
wl

wk

The marginal rate of technical substitution between l, k is equal to their price ratio
(the economic rate of substitution between them). If the price set Y is convex, the
F.O.C are sufficient for the determination of a solution of the Profit Maximization
Problem.
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Figure 5: The profit maximization problem

Given a production set Y , the firm’s profit function π(p) associates to every p the
amount which maximizes the PMP . Similarly, we define the firm’s supply correspon-
dence at p, y(p) as the set of profit-maximizing vector, i.e. y(p) = {y ∈ Y : p·y = π(p)}.
See Figure 5.

An interesting result says that, in general, if the production set Y exhibits non-
decreasing returns to scale, then either π(p) ≤ 0 or π(p) = +∞. In other words,
if returns are constant or increasing, then profits cannot be positive. To see this,
assume they are, that is: 0 < π < ∞. So y∗ ∈ y(p) and π(p) = p · y∗. Furthermore,
y∗ ∈ Y . Take now y∗∗ = 2y∗. By non-decreasing returns 2y∗ ∈ Y . And therefore
p · y∗ = p · 2y∗ = 2 · p · y∗ = 2π(p). Which is clearly a contradiction with π(p) being the
maximized profit.

An important proposition list the properties of the profit function and supply cor-
respondence.

Proposition 2 (MWG 5.C.1). Suppose that π(.) is the profit function of the production
set Y and y(.) is the associated supply correnspondence. Assume also that Y is closed
and satisfied the free disposal property. Then:

1. π(.) is homogeneous of degree one

2. π(.) is convex

3. If Y is convex, then Y = {y ∈ RL : p · y ≤ π(p),∀ p >> 0}

4. y(.) is homogeneous of degree zero

5. If Y is convex, then y(p) is a convex set for all p. Moreover, if Y is strictly
convex, then y(p) is single-valued (if nonempty)

6. if y(p) is a function, and π(p) is differentiable, then:

∂π(p)

∂pi
= yi(p)
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This is called Hotelling’s Lemma.

7. If y(p) is differentiable, then Dy(p) = D2π(p) is a symmetric and positive semi-
definite matrix with Dy(p)p = 0.

Proof. Let’s prove only convexity of π(p). First, note that, given p and y(p), π(p) can be
written as p·y(p). The same for p′, y(p′), then π(p′) = p′y(p′). Take a p′′ = αp+(1−α)p′.
We want to prove that: π(p′′) ≤ απ(p) + (1 − α)π(p). Furthermore, we know that for
all y ∈ Y , py ≤ py(p), and the same for p′. Choose a p′′ s.t. p′′y = [αp+ (1− α)p′]y =
αpy+(1−α)p′y. Then p′′y ≤ αpy(p)+ (1−α)p′y(p). And p′′y ≤ απ(p)+ (1−α)π(p′).
Finally: maxy∈Y p′′y ≤ απ(p) + (1− α)π(p′) = π(p∗).

Property 3. simply says that π(p) is, for firm’s theory, the equivalent that the
indirect utility function is for the consumer theory. And thanks to the Hotelling’s
Lemma, it can be easily used to recover firm’s supply.

The positive semi-definiteness of the matrix Dy(p) is the general mathematical ex-
pression of Law of Supply: Quantities moves in the same directions of prices. If the
price of an output increases, then the quantity supplied does the same. If the price of an
input increases, the demand for the input decreases. An important remark: since there
is no budget constraint, in contrast with the demand theory, there are no compensation
requirements. In other words, no wealth effects, just substitution effects.

3 The Cost Minimization Problem
Cost Minimization is a necessary condition for profit maximization. Indeed a firm
choosing a profit-maximizing production plan implies that there is no way to produce
the same amounts of outputs at a lower total input cost.

Let’s focus on the single-output case. z is a nonnegative vector of inputs, f(z) is
the production function, q the amounts of output, and w >> 0 the vector of input
prices. The Cost Minimization Problem (CMP) is the following (assuming free disposal
of output):

min
z≥0

w · z s.t. f(z) ≥ q (2)

The optimized value of the CMP is given by the Cost Function c(w, q). The optimiz-
ing set of input choices, the Conditional Factor Demand Correnspondence (or function),
is z(w, q).

If z∗ is optimal in the CMP, and if the production function f(.) is differentiable, then
for some λ ≥ 0 the following first order conditions hold for every input l = 1, . . . , L−1:

wl ≥ λ · ∂z
∗

∂zl

with equality in z∗l > 0. As for the PMP the condition above implies that for any
two inputs l, k with (zl, zk) >> 0, the MRTSlk =

wl

wk
.
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This exhibits a strong analogy with the Expenditure Minimization Problem in Con-
sumer Theory.

The following proposition collects the main properties of the cost function and Con-
ditional Factor Demand correspondence.

Proposition 3 (MWG 5.C.2). Suppose that c(w, q) is the cost function of a single-
output technology Y with production function f(.) and that z(w, q) is the associated
conditional factor demand correspondence. Assume also that Y is closed and satisfies
the free disposal property. Then:

1. c(.) is homogenous of degree one in w and non-decreasing in q

2. c(.) is a concave function of w

3. If the sets {z ≥ 0 : f(z) ≥ q} are convex for every q, then Y = {(−z, q) : w · z ≥
c(w, q)∀w >> 0}

4. z(.) is homogenous of degree zero in w.

5. If the set {z ≥ 0 : f(z) ≥ q} is convex, then z(w, q) is a convex set. If {z ≥ 0 :
f(z) ≥ q} is strictly convex, then z(w, q) is single-valued.

6. if z(w, q) consists of a single point, then c(.) is differentiable with respect to w at
w̄ and:

∂c(w̄, q)

∂w
= z(w̄, q)

This is called Shephard’s Lemma.

7. If z(.) is differentiable at w̄, then Dwz(w̄, q) = D2
wc(w̄, q) is a symmetric and

negative semidefinite matrix with Dwz(w̄, q)w̄ = 0

8. If f(.) is homogeneous of degree one (i.e. it exhibits constant returns to scale),
then c(.) and z(.) are homogenous of degree one in q.

9. If f(.) is concave, then c(.) is a convex function of q (in particular, marginal costs
are non-decreasing in q)

Using the cost-function, the firm’s PM problem can be restate as follows:

max
q≥0

p · q − c(w, q).

The F.O.C for q∗ to be profit maximizing is then:

p− ∂c(w, q∗)

∂q
≥ 0

with equality if q∗ > 0. In words, at an interior optimum, price equals marginal
cost.
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4 The Geometry of Cost and Supply in the Single-
Output Case

We see the relationship between a firm’s technology, its cost function and its supply
behavior in the special case of a single output.

Let’s denote the amount of output by q and the vector of factor prices constant at
w̄. The firm’s cost function as C(q). The Average Cost Function as C(q)

q
. And finally,

assuming the function is differentiable, the marginal cost function as C ′(q) = dC(q)
dq

.
Recall that profit-maximizing output levels q ∈ q(p) satisfy p ≤ C ′(q) (with equality

if q > 0). If Y is convex, then C(.) is convex too (from Proposition 3]. Therefore,
marginal costs are non-decreasing. In this case, the satisfaction of the condition above
is also sufficient for establishing that q at p is a profit-maximizing output.

Let’s see three different cases.

4.1 Strictly Decreasing Returns to Scale

The figures above depicts the production set, the cost function and average and marginal
cost functions for a case of decreasing returns to scale. Note that this case, as well as
the following, exhibits convex production sets Y . Therefore the supply locus in each
case coincides with the (q, p) combinations that satisfy the first order condition: prices
equal marginal costs.
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Figure 6: Production Set
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Figure 7: Cost Function
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Figure 8: Average Cost, Marginal Cost and Supply
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4.2 Constant Returns to Scale
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Figure 9: Production Set
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Figure 10: Cost Function
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AC(q) = C ′(q) = q(p)

4.3 Fixed Costs and Decreasing Returns to Scale

Fixed costs are an important source of non-convexities. The figures below show non-
sunk fixed costs (i.e. the inaction is possible). These parallels the cases above. Total
cost is now of the form: C(0) = 0 and C(q) = Cv(q)+K for q > 0. K > 0 and Cv(q),is
convex. The firm will produce a positive amount of output only if its profits is sufficient
to cover not only its variable costs, but also the fixed cost K.

−z

q

Y

q̄

Figure 11: Production Set
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Figure 12: Cost Function
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Figure 13: Average Cost, marginal cost, and supply
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4.4 Fixed Costs and Constant Returns to Scale
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Figure 14: Production Set
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Figure 15: Cost Function

https://meet.google.com/uie-hoqz-njc
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Figure 16: Average Cost, marginal cost, and supply
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