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Chapter 1

Preferences and Choices

1.1 Introduction

Economics models human activity as the interaction of individual agents pursuing their
private interests. Therefore, the building block of economic theory is the study of
individual decision-making.

More in detail, the real starting point is the theory of decision-making in the most
abstract possible setting. This is based on the idea of individual preferences, or choices,
over a set of alternatives. For each alternative, the rational decision-maker can generate
a ranking and, therefore, pick what are her preferred alternatives.

In general, the primitives of the decision-making problem are:

• The set of alternative X, where each x ∈ X is supposed to be a complete descrip-
tion of the decision maker’s preferences.

• A preference relation ⪰ on X. This means, ∀ x, y ∈ X, if x ⪰ y, then x is weakly
preferred to y. ⪰ is assumed to be reflexive, so:

x ⪰ x

• The feasible set. This, defined as B ⊆ X, is the set of alternatives that are
feasible to the decision-maker

Once defined a preference relation and a feasible set, we can define a further object,
the set of most preferred chosen alternatives called the maximal set:

C∗(B,⪰) ≡
{
x ∈ B : x ⪰ y,∀y ∈ B

}
Notice that:

1. C∗(B,⪰) can be empty or contain multiple alternatives

2. The actual choice is one element of C∗(B,⪰).
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3. Notice that the decision maker’s problem does not depend on the feasible set.

There are two ways to model individual choice behavior. One is based on preferences,
i.e., the decision-makers’ tastes. On these are imposed rationality axioms, and then we
analyze the consequences of these preferences for her choices. The second approach is
based on the agent’s actual choices. What matters, in this second case, is if choices are
consistent. Notice, however, that these two approaches are not entirely separated (even
if they belong to two different attempts to tackle the problem of modeling individual
agency, one based on utility functions, the other on the observation of actual choices).
Instead, several successful results have been provided that link the optimal decision
in terms of preferences (and, therefore, the maximization of a utility function) and
consistency.

Let’s start with the so-called "preference-based" decision-making.

1.2 Rational Choice

1.2.1 Preference-based decision making

In this approach, we define rationality by two axioms of the preference relation ⪰.

Definition 1.2.1. If ⪰ satisfies the following axioms:

1. completeness: for all x, y ∈ X, x ⪰ y or y ⪰ x

2. transitivity: for all x, y, z ∈ X, if x ⪰ y and y ⪰ z, then x ⪰ z

Then, the preference relation is said to be rational

Two further relations, from ⪰, can be defined.

Definition 1.2.2. Given a ⪰ on X, then:

1. strict preference: x ≻ y if and only if x ⪰ y and y ⪰̸ x.

2. indifference x ∼ y If and only if x ⪰ y and y ⪰ x

Lemma 1.2.1. If ⪰ is rational then:

1. both ≻ and ∼ are transitive

2. for any x, y, z ∈ X, then:
x ≻ y ⪰ z ⇒ x ≻ z

and
x ⪰ y ≻ z ⇒ x ≻ z

3. ≻ is irreflexive (x ≻ x never holds). ∼, on the contrary, is reflexive.
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Proof. Let’s see 1). We want to show x ≻ y ≻ z. Take x ≻ y. This means x ⪰ y and
y ⪰̸ x. Take y ≻ z. Similarly, this means y ⪰ z and z ⪰̸ y. Then, by transitivity of
⪰, x ⪰ y ⪰ z. We need to show the not z ⪰ x part. By contradiction, assume z ⪰ x.
By transitivity of ⪰ we have z ⪰ y. But we have shown y ≻ z, so we have reached a
contradiction.

Let’s see 2).
Let’s see 3). x ≻ x means x ⪰ x and x ⪰̸ x. A contradiction. x ∼ x means x ⪰ y

and y ⪰ x, which can be, by completeness of ⪰.

Theorem 1.2.2. Suppose ⪰ is rational. Then, for every finite non-empty set B,

C∗(B,⪰) ̸= ∅

Proof. Let’s use mathematical induction (since B is assumed to be finite). Suppose
B = {x}. Then, since x ⪰ x, by completeness, C∗(B,⪰) is not empty. Take B =
{x1, x2, . . . , xi, . . . } i = 1, . . . , n. Take B ∪ {xn+1}. Since ⪰ is complete, then we have
one of the two following cases:

1. xn ⪰ xn+1, so xn ∈ C∗(B,⪰)

2. xn+1 ⪰ xn, so xn+1 ∈ C∗(B,⪰)

In any case C∗(B,⪰) is not empty,

Notice, however, that if B is infinite, C∗(B,⪰) can be empty. Furthermore, tran-
sitivity is a sufficient condition to guarantee nonemptiness of C∗(B,⪰), but is not
necessary. Indeed, a weaker condition is enough, acyclicity.

Definition 1.2.3. A preference relation ⪰ is acyclic if, for all {x, y, z, . . . , u, v},

x ≻ y ≻ z . . . u ≻ v ⇒ x ⪰ v

Notice that transitivity implies acyclicity, but the contrary is not true.

Theorem 1.2.3. Suppose ⪰ are rational. Then, the following statements are equiva-
lent:

1. ⪰ is acyclic

2. C∗(B,⪰) ̸= ∅, for all non-empty an finite B.

Proof.

Notice, however, that transitivity is a very strong assumption. It is easy to think
about real-life situations where transitivity does not hold. A standard and intuitive
example is that of just perceptible differences. Namely, if an individual is asked to
choose between two cups of coffee, where the difference is just one grain of sugar, she
can obviously be unable to taste the difference. However, by adding sugar, she will
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be able to distinguish a cup of sugarless coffee from a cup of coffee with sugar. Other
serious attacks on the empirical relevance of transitivity have come from behavioral
economists with their theory of framing. Finally, it is easy to see how transitivity fails
even inside a simple mathematical model.

Example 1.2.1. Suppose there are 3 individuals who need to make a majority decision
on which alternative to choose between {x, y, z}. They have the following preferences:

x ≻1 z ≻1 y

y ≻2 x ≻2 z

z ≻3 y ≻3 x

Then, if the preferences are aggregated according to the majority rule, we have:

x ≻1,2 z

z ≻1,3 y

y ≻2,3 x

Transitivity fails a group decision. This is the famous "Condorcet’s paradox of voting".
One may notice that an essential feature of this example is that each agent has prefer-
ences radically different from others. Namely, each one has a different worst alternative.
If this hypothesis is relaxed, group transitivity is possible. However, this example simply
shows how transitivity is easy to fail.

Definition 1.2.4. A preference relation ⊆ on X is represented by an utility function
u : X → R if:

x ⊆ y ⇐⇒ u(x) ≥ u(y)

Then, if u represents ⊆, we have:

C∗(B,⊆) ≡
{
x : x ∈ argmaxu(x)

}
This means that rational preferences can be transformed into an optimization problem.

Theorem 1.2.4. A preference can be represented by a utility function only if it is
rational.

Proof. Suppose ⪰ on X is represented by u. For any x, y ∈ X, then, we can have
u(x) ≥ u(y) or u(y) ≥ u(x), so ⪰ is complete. For x, y, z ∈ X, suppose x ⪰ y and
y ⪰ z. Then, we have:

u(x) ≥ u(y) ≥ u(z)

So x ⪰ z.
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Utility functions are extremely useful in describing rational decision-making because
they are much easier to work with. However, it is not true that any rational preference
can be represented by a utility function. One necessary condition is that the set of
alternatives is finite.

Theorem 1.2.5. A rational preference on a finite set of alternatives can be represented
by a utility function.

Proof. Suppose n > 0, where n = |X|, namely the number of alternatives in X. We
can construct a set {Xi} as follows.

• X0 = X

• X1 = X0 − C∗(X0,⪰)

• Xi+1 = Xi − C∗(Xi,⪰),

Define Xm+1 = ∅ for some m ≤ n. Let u(x) = m − i if x ∈ C∗(Xi,⪰). Suppose
x ⪰ y, and x ∈ C∗(Xi,⪰). Then u(x) = m− i and u(y) ≤ m− i. We can do it for all
n-elements in X.

If the set of alternatives is not countable, more conditions are needed. A famous
example is that of lexicographic preferences.

Example 1.2.2. Define X = [0, 1]× [0, 1]. Then, we have (x1, y1) ⪰ (x2, y2) if:

• x1 > x2 or

• x1 = x2 and y1 > y2

However, ⪰ has no utility representation. To see this, suppose u(x) exists. Then, for
every xi, we can pick a rational number such that u(x1, 1) > r(x1) > u(x2, 2) > r(x2) >
u(x1, 1) (because of the property that between any 2 real numbers, there is a rational
number). This means that r(x1) > r(x2) because > is transitive. Therefore, we can
construct a function r(·) such that:

r : [0, 1]× [0, 1] → Q

But this is impossible because [0, 1] is an uncountable set, whereas Q, the set of rational
numbers, is countable.

The utility function ranks the alternatives but does not say anything about the
relative ratio between those. This principle, initially stated by Vilfredo Pareto and
then accepted by all economists, means that utility functions are unique up to any
monotonic transformations. Then, we have the following theorem:

Theorem 1.2.6. If u represents ⪰ and ψ : R → R is strictly increasing, then ψ ◦ u
represents ⪰.
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Proof. By definition of utility representation:

x ⪰ y ⇐⇒ u(x) ≥ u(y)

By definition of strictly increasing function, we have:

ψ(x) > ψ(y) ∀x, y ∈ R

Combining together the 2 definitions, we have:

ψ ◦ u(x) ≥ f ◦ u(y)

1.2.2 Choice-Based Approach

Preferences cannot be measured or observed. A different approach looks at what people
actually do, i.e., their choices.

Choices can actually be observed. So, the problem is that of studying how they are
consistent or not. The primitive datum is a choice structure (B, C), where:

• B ⊂ 2X \∅, that is B is the power set (minus the empty set) of all possible feasible
sets

• C : B → 2X \ ∅: this is choice rule, which is a correspondence

• C(B) ⊆ B, ∀B ∈ B.

An example is: given X = {x, y, z}, and let B = {{x, y}, {x, z}, {y, z}}. Then, one
possible choice structure is (B, C) is:

C({x, y}) = {x}

C({y, z)} = {y}
C({x, z)} = {x, z}

In order to make a choice analyzable, we need a definition of "consistency". This is
given by the following.

Definition 1.2.5. A choice structure (B, C) satisfies the weak axiom of revealed
preferences (WARP) if and only if:

• for all sets A,B ∈ B, x ∈ C(A) and y ∈ A.

• if y ∈ C(B) and x ∈ B, then x ∈ C(B).

Example 1.2.3. Take X = {x, y, z} and B{{x, y}, {x, y, z}, {x, z}}. And the choice
structure is: (B, C), where C = ({x, y}) = {x, y}. Suppose y ∈ C = ({x, y, z}). Then
C satisfies WARP only if C({x, y, z}) = {x, y}.

In other words, this simply means that if x is chosen in a bundle where y is available,
a consistent choice cannot be to choose only y (in a different situation) where x is
available. In this second case, x and y must be chosen together.
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1.2.3 The relationship between Preference relations and Choice
rules

.
Notice that the choice-based approach and the preference-based approach are not

the same. In particular, the second makes it possible to represent preferences through
a utility function and, therefore, to transform the problem into a utility maximiza-
tion problem. However, preferences are just a "psychological" datum that cannot be
observed in reality, whereas choices can, at least in principle.

Besides, the fact that these two approaches are different is not a real issue since
they can be linked together. In other words, the choice structure generated by ⪰, that
is, C∗(B,⪰) satisfies the weak axiom of real preferences.

Theorem 1.2.7. Suppose ⪰ is rational. Then, the choice structure generated by ⪰,
C∗(B,⪰) satisfies WARP.

Proof. Suppose x, y ∈ B, and x ∈ C∗(B,⪰). This implies x ⪰ y. Consider another
feasible set, B′, such that x, y ∈ B′. Suppose y ∈ C∗(B′,⪰). Then, for any z ∈ B′, we
have y ⪰ z. Since x ⪰ y and y ⪰ z, then, by transitivity, x ⪰ z and x ∈ C∗(B′,⪰).

We have seen that if ⪰ is rational, then C∗(B,⪰) satisfies the weak axiom. What
about the other way around? Suppose we observe a bundle of decision maker’s choices
that satisfies the weak axiom. Can we find preferences that are rational, or that ratio-
nalize the WARP-consistent choice?

Definition 1.2.6. A choice structure (B, C) is said to be strongly rationalized by a
rational preference ⪰ if:

C(B) = C∗(B,⪰), ∀B ∈ B

Example 1.2.4. Suppose X = {x, y, z}, B = {{x, y}, {y, z}} and C({x, y} = {x, y},
C({y, z}) = {y}. This can be strongly rationalized by the following preference:

x ∼ y ≻ z

Definition 1.2.7. A choice structure (B, C) is said to be weakly rationalized by a
rational preference ⪰ if:

C(B) ⊆ C∗(B,⪰), ∀B ∈ B

Notice that this is a weaker requirement than the previous one. Furthermore, any
preference that makes the individual indifferent between any element of X will weakly
rationalize any choice behavior.

However, not all the choices satisfying WARP are strongly rationalizable by rational
preferences. See the following example (Mas-Colell, Whinston, and Green 1995, p. 13)

Example 1.2.5. Suppose X = {x, y, z} and B = {{x, y}, {x, z}, {y, z}}, C({x, y}) =
{x}, C = ({y, z}) = {y} and C({x, z}) = {z}. This choice structure satisfies WARP.
But it is not rationalizable by any rational preference. Indeed, by C({x, y}), x ≻ y. By
C({y, z}), y ≻ z. But ≻ is transitive, then x ≻ z, which contradicts C({x, z}) = {z}.
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It can also be the case that if a choice structure can be rationalized by ⪰, still, it is
not unique.
Example 1.2.6. Suppose X = {x, y, z}, and B = {{x, y}, {x, z}, {x, y, z}}, C({x, y}) =
{x}, C = ({y, z}) = {x} and C({x, y, z}) = {x}. Then, again, WARP is satisfied, and
we have x ≻ y and x ≻ z, but we don’t know anything about y and z.

If B contains enough subsets of X, and if (B, C) satisfies the weak axiom, then there
exists a rational preference that rationalizes C(·), relative to B.
Theorem 1.2.8. If (B, C) is a choice structure that:

1. satisfies WARP

2. contains all the subsets of X up to three elements,
Then, there is a rational preference relation ⪰ that rationalizes C(·) relative B, i.e.:

C(B) = C∗(B,⪰)

Furthermore, this rational preference is the unique doing so.
Proof. We want to show that 1) ⪰ is rational, that 2) ⪰ rationalizes C()̇, and that 3)
it is the unique preference to rationalize C(·).

To see 1) ⪰ must be complete and transitive. Complete means that either x ⪰ y or
y ⪰ x. Since B comprises all the subsets of X up to three elements, then B = {x, y} ⊆
B. Then, or x ∈ C({x, y}) or y ∈ C({x, y}) or both. In any case, x ⪰ y or y ⪰ x.

Let’s see transitivity now. We want to show that wherever x, y, z, x ⪰ y and y ⪰ z,
this implies x ⪰ z. C({x, y, z}) ̸= ∅, since {x, y, z} ∈ B. Then, we have three cases:

1. x ∈ C({x, y, z}). This trivially implies transitivity.

2. y ∈ C({x, y, z}). This means y ⪰ x. But we have also x ⪰ y. So it exists a
B = {x, y} such that x ∈ C(B), and by WARP, we have x ∈ C({x, y, z}).

3. z ∈ C({x, y, x}). y ⪰ z means that there is a B = {y, z} and y ∈ C(B). By
WARP, y ∈ C({x, y, z}). And then, by the argument above, x ∈ C({x, y, z}).

Let’s see 2).
C(B) = C∗(B,⪰) means:

C(B) ⊆ C∗(B,⪰)

C∗(B,⪰) ⊆ C(B)

To see the first subset, notice that x ∈ C(B) reveals x ⪰ y. So x ∈ C∗(B,⪰), and
C(B) ⊆ C∗(B,⪰).

Let’s show C(B) ⊆ C∗(B,⪰). That is, if x ∈ C∗(B,⪰), then x ∈ C(B). x ∈
C∗(B,⪰) implies that x ⪰ y. Pick y ∈ C(B). Since x ⪰ y, then there exists B ∈ B
such that B = {x, y}, y ∈ C(B), implies x ∈ C(B) by WARP. So C∗(B,⪰) ⊆ C(B),
for all B ∈ B.

Finally, for uniqueness, since all two-element subsets of X are contained in B, then
C(·) completely exhausts any pairwise preference relations on X for any rationalizing
⪰.
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1.3 Consumer Choice

The basic decision unit of microeconomic theory is the consumer. Assuming that the
consumer is part of a market economy, namely a situation where goods and services are
available for purchase at known prices, we can define the fundamentals as follows.

The consumer is the rational decision-maker. Her scope is to purchase or sell goods
l = 1, . . . , n. The set of all feasible commodities bundles is given by X, now called
consumption set. This, together with the Walrasian budget set, represents the
constraints of the consumer problem. Furthermore, the choice rule (seen in the con-
text of the choice-based approach to individual decision-making), is called Walrasian
demand function.

1.3.1 The Consumption Set

Usually, it is assumed that X = RL
+, so a typical consumption bundle is given by:

x =

x1...
xL

 ≥ 0

The consumption set has the following features:

• Unbounded: each consumer is too small to exhaust all the goods

• Perfectly divisible (since X ⊆ RL
+). This does not exclude that there are discrete

goods that are not indivisible. In that case, we can accommodate the utility
function on consequence.

• It is a closed set.

• It is a convex set: that is (x, y) ∈ X, then αx+(1−α)y ∈ X, ∀x, y ∈ X,α ∈ [0, 1].
Convexity is both mathematically and economically important.

1.3.2 Competitive Budget Sets

The Consumption set represents a sort of physical constraint. In addition to it, we have
an economic constraint. How many commodity bundles a consumer can afford. This
can be formalized by introducing two assumptions:

• The L commodities are traded in the market at dollar prices "publicly quoted"
(or, said otherwise, markets are complete). These prices then can be represented
by a price vector:

p =

p1...
pL

 ∈ RL
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x2

x1

RL
+

Figure 1.1: An example of Consumption Set

Prices can be negative, meaning that a consumer is giving away a commodity
or she is being paid to consume. In any case, for most of the general uses, it is
assumed the prices are strictly positive.

• prices are beyond the control of one consumer. This is the price-taking assump-
tion.

Furthermore, prices are linear. This means that every unit of good k has the same
price, pk.

If a consumption bundle is affordable, it depends on the prices and the consumer’s
wealth level. Then, a consumption bundle is affordable if its total costs do not exceed
the consumer’s wealth level:

p · x = p1x1 + · · ·+ pLxL ≤ w

Then, we can define the Walrasian budget set.

Definition 1.3.1. The Walrasian, or competitive budget set

Bp,w =
{
x ∈ RL

+ : p · x ≤ w
}

is the set of all feasible consumption bundles for the consumer, at prices p and wealth
w.

The set {x ∈ RL
+ : p · x ≤ w} is called budget hyperplane, and it is the upper

boundary of the budget set. The slope of the budget hyperplane −p1
p2

is the rate of
exchange between the two commodities. If the price of a commodity 2 decreases, then
with the same price, the consumer can buy more units of it. Then, the budget set
becomes larger.

12



x2

x1

Bp,w

p2

p1

p′2

Figure 1.2: An example of Budget Set for L = 2. The effect of a price change

The Budget set is homogeneous of degree zero, namely if prices and wealth are both
multiplied by α > 0, the budget set does not change.

Furthermore, the budget set is convex. This means that if x, y ∈ Bp,w, then any
convex combination of x, y is still in Bp,w.

The last result is extremely important for consumer theory.

Proposition 1. If p≫ 0, then Bp,w is compact.

Proof. We must show that it is closed and bounded (Heine-Borel Theorem).
To see that it is closed, take any sequence {xn} ∈ Bp,w. This means p · xn ≤ w. By

definition of closed set, then x s.t {xn} → x is also in Bp,w. Notice that weak inequality
is preserved under limit operators. This means that p · x ≤ w.

Let’s see that Bp,w is bounded. Let’s define P = min pj > 0. Then, we can write:

w ≥ p · x ≥
∑
j

pjxj ≥ P (
∑
j

xj)

Then
∑

j x ≤ w
P
.

1.3.3 Demand Correnspondences

The demand correspondence (or Walrasian demand) x(p, w) assigns a set of chosen
consumption bundles for each price-wealth pair (p, w). This can be a correspondence (a
set-valued function) or a single-valued function. In the last case, we speak of demand
function. In any case, x(p, w) ⊆ Bp,w.

There are two main assumptions regarding the Walrasian demand correspondence:
the homogeneity of degree zero, and the Walras’ Law

Definition 1.3.2. The Walrasian demand correnspondence (function) x(p, w) is homo-
geneous of degree zero if x(αp, αw) = α0x(p, w) = x(p, w), for any α > 0.
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This means that if both prices and wealth change in the same proportion, then the
individual’s choice does not change. This because the consumption bundle does not
change Bp,w = Bαp,αw

Example 1.3.1. Consider the following demand function:

x(p, w) =

[
x1(p, w)
x2(p, w)

]
=

[
αp2

p1+p2
· w
p1

βp1
p1+p2

· w
p2

]

This satisfies Walras’s law if x · p = w. Then:

p.x =
[
p1 ·

αp2
p1 + p2

· w
p1

+ p2 ·
αp2

p1 + p2
· w
p1

]
=[ αp2

p1 + p2
+

αp2
p1 + p2

]
· w =

[p1 + p2
p1 + p2

]
w = w if α = β = 1

Definition 1.3.3. The Walrasian demand correspondence (function) x(p, w) satisfies
Walras’ Law, if, for every p≫ 0, and w > 0, we have p · x = w, for all x ∈ x(p, w).

Roughly speaking, this means that the consumer spends all his wealth (over her
lifetime)

Example 1.3.2. Consider the demand function of above:

x(p, w) =

[
x1(p, w)
x2(p, w)

]
=

[
αp2

p1+p2
· w
p1

βp1
p1+p2

· w
p2

]

This is homogeneous of degree zero for all α, β > 0. Indeed:

x1(αp, αw) =
α2p2

αp1 + αp2
· αw
αp1

=
αp2

α(p1 + p2)
· αw
p1

=
αp2

p1 + p2
· w
p1

= x1(p, w)

x2(βp, βw) =
β2p2

βp1 + βp2
· βw
βp1

=
βp2

β(p1 + p2)
· βw
p1

=
βp2

p1 + p2
· w
p1

= x2(p, w)

1.3.4 Some Comparative Statics

We are interested in studying how the choice of consumers changes with changes in
prices and wealth.

There are two types of effects, the wealth effects and the price effects. As the
name suggests, the first examines the effect on the demand of a change in wealth and
the second of a change in prices. This change is represented by the partial derivatives:

∂xi(p, w)

∂w
and

∂xi(p, w)

∂pi
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x2

x1

Bp̄,w

Bp̄,w′

Bp̄,w′′

Ep

x(p̄, w)

x(p̄, w′)

x(p̄, w′′)

Figure 1.3: The wealth expansion path at price p̄

Wealth effects

Fixing the price p̄, the function of wealth x(p̄, w) is called Engel’s curve, and its
image represents the wealth expansion path. For any combination (p, w), the derivative
∂xi(p,w)

∂w
is the wealth effect for the demand of the i-th good.

Then, we have the following characterization of goods:

• A good i is called normal at (p, w) if:

∂xi(p, w)

∂w
≥ 0

That is if the demand is non-decreasing with wealth. Assuming that the standard
demand for a good is increasing with wealth, namely, if the consumers’ wealth
increases, the demand for that good increases too, or at least remains the same,
a normal good does not display the opposite effect.

• A good is called inferior at (p, w) if:

∂xi(p, w)

∂w
≤ 0

Namely, if the consumer’s wealth increases and the consumption decreases. A
standard example is the substitution of some kind of cheap products, say cheap
food, with better quality ones as the consumer’s income increases.

15



The wealth effects can be represented by the following (1× L) matrix:

Dwx(p, w) =


∂x1(p,w)

∂w...
...

∂xL(p,w)
∂w

 ∈ RL

Price effects

Price effects determine how consumption levels of the various commodities change as
prices change.

More generally, the derivative xi(p,w)
∂pk

is the price effect of the change of the price of
good k on the demand for good l (l = 1 . . . , k, . . . L). Then we have:

• A good is said to be ordinary if:

∂xj(p, w)

∂pj
< 0

Namely, if the price increases, then the demand decreases.

• A good is said to be Giffen1, if:

∂xj(p, w)

∂pj
> 0

Namely, if the price increases but also the demand increases. The standard exam-
ple (thankfully outdated!) is that of potatoes and meat. Imagine a poor consumer
with low wealth whose diet is made up of potatoes six days a week and meat one
day a week. If the price of potatoes increases, then she cannot afford any more
meat on the seventh day. So, the overall demand for potatoes increases, even if
their price has increased too.

A useful way of representing consumer demand for each level of (p, w) is the offer
curve.

The price effects can be represented by the following (L× L) matrix:

Dpx(p, w) =


∂x1(p,w)

∂p1
. . . ∂x1(p,w)

∂pL...
...

∂xL(p,w)
∂p1

. . . ∂xL(p,w)
∂pL


Furthermore, we say that:

1Alfred Marshall attributed this idea to the XIXth century Scottish economist Robert Giffen
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x(p′, w)
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Figure 1.4: An example of offer curve, where p2 changes (p′′2 < p′2 < p2)

• A good k is a (gross) substitute for good l if:

∂xl(p, w)

∂pk
> 0

Namely, if the demand of l increases when the price of k increases.

• A good k is a (gross) complement for good l if:

∂xl(p, w)

∂pk
< 0

Namely, the demand of l decreases when the price of k increases.

Implications of homogeneity of degree zero and Walras’ Law

Both Homogeneity of degree zero and Walras’ Law imply certain restrictions for price
and wealth effects of consumer demand.

Let’s start with the implications of homogeneity of degree zero.

Proposition 2. If the Walrasian demand function x(p, w) is homogenous of degree
zero, then for all p and w, we have:

n∑
i=1

∂x(p, w)

∂pi
· pk +

∂x(p, w)

∂w
· w = 0 for i = 1 . . . , n

Proof. By homogeneity of DZ, we can write:

x(αp, αw)− x(p, w) = 0, α > 0

17



Differentiating this with respect to α (and evaluating at α = 1) we have:
n∑

i=1

∂x(p, w)

∂pi
· pk +

∂x(p, w)

∂w
· w = 0 (1.1)

Notice that this is a special case of Euler’s theorem, according to which if f is
differentiable, homogeneous of degree r and differentiable, then we have:

n∑
i=1

∂f(x1, . . . , xn)

∂xi
· xi = rf(x1, . . . , xn)

This means that homogeneity of degree zero implies that price and wealth derivatives
for any good l, when weighted by these prices and wealth, sum to zero.

This can also be restated in terms of elasticities by multiplying each term by 1
xl(p,w)

.
Then we can write:

εl,pk(p, w) =
∂xl(p, w)

∂pk
· pk
xl(p, w)

εl,w(p, w) =
∂xl(p, w)

∂w
· pk
xl(p, w)

These elasticities give the percentage change in demand for good l per marginal
percentage change in the price of good k or wealth. Then, using elasticities, we can
rewrite (1) as:

n∑
i=1

εl,pk(p, w) + εl,w(p, w) = 0 for l = 1, . . . , n (1.2)

Walras’s Law has two implications for the price and wealth effects of demand.

Proposition 3. If x(p, w) satisfies Walras’ Law, then, for all p and w, we have:

L∑
i=1

pi
∂xl(p, w)

∂pk
+ xk(p, w) = 0 ∀k = 1, . . . , L (1.3)

Proof. By Walras’ Law, we have:
p · x = w

This can be written as: [
p1x1(p, w) + · · ·+ pLxL(p, w)

]
= w

Differentiating with respect to prices, we have:

L∑
i=1

pi
∂xl(p, w)

∂pk
+ xk(p, w) = 0 ∀k = 1, . . . , L
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This is called Cournot Aggregation. This means that the total expenditure
cannot change in response to a change in prices.

Proposition 4. If x(p, w) satisfies Walras’ Law, then, for all p and w, we have:
L∑
i=1

pi
∂xl(p, w)

∂w
= 1 ∀k = 1, . . . , L (1.4)

Proof. As above, by Walras’s Law, we have:

p · x = w

Differentiating with respect to w, we have:
L∑
i=1

pi
∂xl(p, w)

∂w
= 1

This is called Engel aggregation. This means that the total expenditure must
change by an amount equal to any wealth change.

Finally, we can easily pass from (3) e (4) to the elasticity formulas (5) and (6):
Let’s see (4):

L∑
i=1

pi
∂xl(p, w)

∂pk
+ xk(p, w) = 0

Multiply by pk
w

. Then we have:
n∑

i=1

pi
∂xl(p, w)

∂pk

pk
w

+
pkxk(p, w)

w
= 0

Multiplying both elements by xl(p,w)
xl(p,w)

= 1, and rearranging, we have:
n∑

i=1

plxl(p, w)

w
· ∂xl(p, w)

∂pk
· pk
xl(p, w)

+
pkxk(p, w)

w
= 0 (1.5)

Where εl,pk(p, w) =
∂xl(p,w)

∂pk
· pk
xl(p,w)

and plxl(p,w)
w

is the budget share of the consumer’s
expenditure on good l given prices p and wealth w.

Let’s see (4):
L∑
i=1

pi
∂xl(p, w)

∂w
= 1

Multiplying both sides for xl(p,w)
xl(p,w)

· w
w

and rearranging, we have:

L∑
i=1

plxl(p, w)

w
· ∂xl(p, w)

∂w
· w

xl(p, w)
= 1 (1.6)

Where ∂xl(p,w)
∂w

is the elasticity of demand with respect to wealth.
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Chapter 2

Classical Demand Theory

2.1 Introduction

The traditional approach to consumer behavior is to assume that each consumer has
well-defined preferences over all the alternative bundles so that she tries to select her
preferred bundles among those available. Furthermore, we have seen if preferences
are rational and the set of alternatives is finite, these can be represented by a utility
function.

These results have been generalized in the "neo-classical" theory of consumer de-
mand, where demand solves the utility maximization problem, as well as its dual, the
expenditure minimization problem.1

2.2 Consumer preferences

Recall that the consumer chooses among different alternatives in the consumption bun-
dle X ⊆ RL

+. This choice is reflected in, say, the preference of x over y, and we write
x ⪰ y. ⪰ is rational if it is complete and transitive.

An assumption that is often made is that large quantities of goods are preferred to
lesser quantities. This idea is formalized in the notion of monotonicity. In particular,
we have three "versions" of it, from the weakest one to the strongest one.

Definition 2.2.1. A preference ⪰ of X is:
1The origins of this theory date back to the end of the XIXth Century, when some scholars, such as

Alfred Marshall, Frances Ysidro Edgeworth, and Vilfredo Pareto, developed some models of demand
theory, and, especially Pareto, started to investigate the mathematical properties of Utility functions
(Edgeworth 1881; Marshall 1920; Pareto 2014(1906)) These results have been generalized in a math-
ematical fashion after the 1930s in some works as Hicks and Allen 1934; Hicks 1939 and Samuelson
1947. Finally, these have been rigorously proved from the 1950s onwards, together with the develop-
ment of strong mathematical techniques to address these problems (the first comprehensive example
is: Debreu 1959)
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• Locally non-satiable if any open neighborhood of x, i.e. ∥x − y∥ ≤ ϵ contains
a bundle y ∈ X such that y ≻ x

• monotone if xi > yi for i = 1, . . . , n implies x ≻ y for any x, y

• strongly monotone if x ≥ y(xi ≥ yi,∀i) implies x ≻ y

Strong monotonicity just requires greater or equal to, for all xi, yi. Monotonic-
ity instead requires strict inequality. Therefore, preference relations that are strongly
monotone are also monotone, the opposite is not always true: strong monotonicity is a
stronger assumption.

Example 2.2.1. Consider the bundles x = (1, 1) and y = (1, 2). If ⪰ is strongly
monotone, then y ≻ x. However, if ⪰ is only monotone, then we cannot say y ≻ x,
since x1 = y1.

Local non-satiation is the weakest condition. This means that for every bundle x,
we can always define a ϵ−neighborhood such that y′ ∈ Nϵ ≻ x.

Example 2.2.2. The classical example of preferences which does not satisfy local non-
satiation is given by the utility function (however, notice that we have not already
introduced the notion of utility function):

u(x) = −∥x− α∥

A real-life example is given by voter’s utility functions. Each voter has a preferred
candidate. Therefore, her utility is given by the euclidean distance from the position of
the candidate.

Local non-satiation rules out the possibility of thick indifference curves (see below).
Given ⪰ and a consumption bundle x, we can define three sets. The upper contour

set of x (or NBT(x)) is the set of all bundles that are at least as good as x, namely:{
x ∈ X : y ⪰ x

}
Similarly, the lower contour set (or NWT(x)) of x is the set of bundles that x is at
least as good as, namely: {

y ∈ X : x ⪰ y
}

These sets are closed, and their intersection is the set of all bundles that are indifferent
to x, namely: {

y ∈ X : y ∼ x
}

This last set is also called indifference curve. Graphically, we have:
A second assumption for preferences is that of convexity. This concerns the trade-

offs that the consumer is willing to make between different goods. In particular, con-
vexity can be seen as an "inclination for diversity": one consumer prefers a combination
of two goods instead of allocating all her income to one good.
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x

y

x

{y ∈ X : x ⪰ y}

{x ∈ X : y ⪰ x}

{y ∈ X : y ∼ x}

Figure 2.1: Upper contour set, Lower counter set, and indifference curve

Definition 2.2.2. The preference ⪰ on a convex choice set X is convex if and only
if x ⪰ y and x′ ⪰ y implies that for any α ∈ (0, 1), αx + (1 − α)x′ ⪰ y. ⪰ is strictly
convex if and only if x ⪰ y and x′ ⪰ y and x ̸= y, imply that for any α ∈ (0, 1),
αx+ (1− α)x′ ≻ y.

A way to interpret convexity in economics is in terms of marginal rate of sub-
stitution, that is, the slope of the indifference curves. These are diminishing, and this
relates to the intuitive idea of diminishing marginal utility, namely, given an initial
bundle (x, y), it takes increasingly larger quantities of x to compensate the losses to y
in order to keep total utility unchanged.

Furthermore, a theorem links convex preferences and quasi-concave utility func-
tions.2

Theorem 2.2.1. Suppose a rational and continuous preference ⪰ is represented by u.
It is (strictly) convex if and only if u(·) is (strictly) quasi-concave.

Proof. We see only QC ⇒ convex preferences (the other direction is similar). Define
x ⪰ x′ and x′ ⪰ x′ (by completeness). Then we can write:

αx+ (1− α)x′ ⪰ x′

Since ⪰ can be represented by u, we have:

u(αx+ (1− α)x′) ≥ u(x′)

2Quasi-concave functions are a class of functions that maintain certain properties of convex and
concave functions but are less demanding. In particular, Quasi-concavity is always preserved under
monotonic transformations (and this is not true for concave functions.

Definition 2.2.3. Let f : E ⊆ Rn be convex. A function f : E → R is quasi-concave if:

f(λx+ (1− λ)x′) ≥ min{f(x′), f(x)} ∀x, x′ ∈ E,∀λ ∈ [0, 1]

If the inequality is strict, for all λ ∈ (0, 1), then we have strict quasi-concavity.
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Then, since x ⪰ x′ and x′ ⪰ x′, we can write u(x′) = min{u(x), u(x′)}, and:

u(αx+ (1− α)x′) ≥ u(x′)

As we will see more in detail below, if u(·) is quasi-concave, then x(p, w) is a convex
set, and if u(·) is strictly quasi-concave, then x(p, w) is a singleton (or empty).

An important assumption (needed, as we will see, to ensure the existence of utility
functions) is continuity.

Definition 2.2.4. A preference ⪰ on X is continuous if it is preserved under limits.
That is, for any sequence of pairs {(xn, yn)}∞n=1, with xn ⪰ yn, for all n, and xn →
x, yn → y, then x ⪰ y.

Example 2.2.3. An example of non-continuous preferences are lexicographic pref-
erences. Indeed, take x = ( 1

n
, 0) and y = (0, 1). Then, we have x ≻ y. But, taking

the limit, we have y ≻ x. (Further, recall that lexicographic preferences cannot be
represented by a utility function because they are a map from an uncountable set to a
countable one).

We can link the continuity of preferences and upper(lower) contour sets in the
following way.

Lemma 2.2.2. The following statements are equivalent:

• A preference is continuous

• Upper and lower contour sets are closed sets (therefore, their complementary, the
set of bundles that are strictly best or strictly worse than x, are open)

• If x ⪰ y, then a neighborhood Nϵ(x), with ϵ > 0 exists, such that x′ ∈ y, for all
x′ ∈ Nϵ(x).

If the set of alternatives is countable, we can represent those by means of a utility
function. If the set is not countable (like X = RL), but preferences are continuous, we
can still represent preferences using a utility function. Furthermore, the utility function
is continuous, so many desirable properties, starting with differentiability, apply. The
following result shows this.

Theorem 2.2.3. (Monotone Representation Theorem) A continuous rational ⪰ on RL
+

that is monotone is representable by a continuous function u(x).

Proof. To get the intuition, we can see the figure (when L = 2):
Let x ∈ R2

+. We can define two subsets, A+(x) = {α ∈ R : αe ⪰ x} and A−(x) =
{α ∈ R : αe ⪯ x}, where e = (1, 1, . . . , 1). By monotonicity both A+(x) and A−(x)
are non empty. By continuity, the sets are closed (notice that this is another way of
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u(x) = u(α)

defining upper and lower contour sets). Since ⪰ is rational, then it is complete, so
A+(x) ∪ A−(x) = {x ∈ X : x = αe, α ∈ R+}. This set is connected (namely is not the
union of two separated non-empty sets). The set A+(x)∩A−(x) is a singleton, and we
can define its element as α(x). Then it exists a unique α(x) such that α(x)e ∼ x. So
we can write α(x) = u(x). This for what concerns the construction of the proof. Let’s
see now that ⪰ can be represented by u(·).

(⇒) Suppose u(x) ≥ u(y). If u(x) = u(y), then x ∼ α(x)e ∼ y, so we have x ∼ y,
and x ⪰ y. If u(x) > u(y), then a(x)e ≻ α(y)e (by monotonicity), and since x ∼ α(x)e
and y ∼ α(y)e, then x ≻ y.

(⇐) Suppose x ⪰ y. Then α(x)e ∼ x ⪰ y ∼ α(y)e. Hence α(x)e ⪰ α(y)e and by
monotonicity u(x) ≥ u(y).

The last thing we need to prove is that u(·) is continuous. A definition of continuity
for functions is that the preimage of every open subset of the co-domain must be open.
In this case, it means that u−1(α,∞) and u−1(−∞, α) must be open in the domain.
Since u(α, . . . , α) = α, these sets are strict contour sets. Therefore, they are open. So
u(·) is continuous.

Notice that this theorem heavily rests upon monotonicity. In general, this assump-
tion is not necessary for utility representations. A stronger result is the following.

Theorem 2.2.4 (Debreu’s Representation Theorem). For any a and b > a, a, b ∈ R, a
continuous rational preference on a connected set X ⊆ RL is represented by a continuous
function u : X → [a, b].

If a continuous function u represents a preference ⪰, then ⪰ is continuous.

2.2.1 Some consumer utility functions

In some applications, it is extremely useful to use preferences and utility functions
where it is possible to deduce the entire consumer’s preference relation from a single
indifference set. Three examples are homothetic preferences, separable utility and
quasilinear utility.
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Let’s start with homotheticity.

Definition 2.2.5. A preference ⪰ is homothetic if x ⪰ y implies that λx ⪰ λy, ∀λ ∈
R+.

A corollary of this result is the following:

Lemma 2.2.5. A homothetic preference implies that if x ∼ y, then λx ∼ λy,∀λ ∈ R+.

x

y

x

y

λx

λy

Figure 2.2: Homethetic preferences

Homothetic preferences have some nice properties, especially, as the figure suggests,
the income expansion path is linear. The following result links homotheticity and
homogenous utility functions.

Theorem 2.2.6. A rational, continuous, and monotone preference is homothetic if
and only if it can be represented by a continuous and homogeneous of degree one utility
function.

Proof. Recall that homogeneity of degree one means u(λx) = λu(x). (⇒) For any x,
there exists an α such that x ∼ α, and u(x) = α(x). Since the preference is homothetic,
then λx = λα, and u(λx) = λα(x) = λu(x). (⇐) x ≥ y implies u(x) ≥ u(y) By
homogeneity, u(λx) ≥ λu(x) = λu(x) = u(λx).

Example 2.2.4. The following are examples of homothetic utility functions:

• the Cobb-Douglas utility function u(x, y) = xαy1−α.

• The utility function for complementary goods (Leontief preferences): u(x, y) =
min{ x

m1
, x
m2

} (where m1 and m2 are the quantities of goods x and y).

Another utility function class involves separable utility. In many cases, it is
convenient to assume that the decision maker’s preferences are separable, namely that
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the preferences over different goods are independent. A standard representation for
separable utility is:

u(x1, . . . , xn) =
n∑

i=1

u(xi) i = 1, . . . , n

The implicit assumption on which these class of utility functions are based is the fol-
lowing:

Definition 2.2.6. A preference ⪰ on X satisfies double cancellation property if,
for all x, y, z ∈ X, we have that (x1, x2) ⪰ (y1, y2) and (y1, z2) ⪰ (z1, x2) implies:

(x1, z2) ⪰ (z1, y2)

In words, this property states that if a bundle with (x1, x2) is weakly preferred to
a bundle with (y1, y2), and a bundle with (y1, z2) is weakly preferred to a bundle with
(z1, x2), then a bundle with (x1, z2) must be weakly preferred to a bundle with (z1, y2),
since x1 ⪰ y2 and z2 ⪰ z1. This property is necessary to guarantee that ⪰ can be
represented by separable utility functions. See the following lemma:

Lemma 2.2.7. Suppose ⪰ is represented by u(x, y). u(x, y) is separable only if ⪰
satisfies double cancellation property.

Proof. By double cancellation property and representation theorem, we have that:

u(x1, x2) ≥ u(y1, y2)

and
u(y2, z2) ≥ u(z1, x2)

implies:
u(x1, z2) ≥ u(z1, y2)

But this is true only if u(·) is separable. Indeed:

u(x1) + u(x2) ≥ u(y1) + u(y2)

and
u(y1) + u(z2) ≥ u(z1) + u(x2)

implies
u(x1) + u(z2) ≥ u(z1) + u(y2)

Because all the left-side elements are greater or equal to all the right-side elements.

A third class of utility functions are those with quasi-linear utility. These are
used to represent those situations where the utility of one (or more) goods is linear
because we are interested only in some goods. The standard form is:

u(x, y) = y + u(x)

We are interested in the utility of x. Therefore, any change of y is kept constant. Most
importantly, this eliminates the income and wealth effects of price changes (see below).
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Definition 2.2.7. A rational preference ⪰ on X = RN+1 satisfies the following prop-
erties:

• (t, y) ⪰ (t′, y) iff t ≥ t′, where t, t′ ∈ R

• for every y, y∗ ∈ RN , there exists some t ∈ R such that (0, y) ∼ (t, y∗)

• if (t, y) ⪰ (t′, y′) then for all d ∈ R, (t+ d, y) ≥ (t′ + d, y′)

if and only if it can be represented by a quasi-linear utility function t+ v(x)

2.3 The Utility Maximization Problem

So far, we have defined the consumer’s problem as one involving preferences and their
representation through a utility function. However, once we have found a utility func-
tion and a budget set as well, the problem is to determine what the actual choice of
the consumer is. This is obtained by solving the following optimization problem:

v(p, w) = max
x∈RL

+

u(x)

s.t.

p · x ≤ w

The set of optimal solution, x∗(p, w), is called Marshallian Demand correnspon-
dence.3

x∗(p, w) = argmax
x∈Bp,w

u(x)

If this set is single-valued, then we have the Marshallian demand function. In the
case of 2 goods, we have the following familiar geometrical representation:

The demand is given by the point of tangency between the indifference curve and
the budget set. Intuitively, this comes from Walras’ Law and Local non-satiation. The
following proposition states the main properties of the demand correspondence.

Proposition 5. Suppose that u(·) is a continuous utility function representing ⪰ on
X ⊆ RL

+, and ⪰ is Locally non-satiated. Then, the Marshallian correnspondence
satisfies the following properties:

1. Homogeneity of degree zero in (p, w). Namely, x(p, w) = x(αp, αw).

2. Walras’ Law: p · x = w, for all xi ∈ x(p, w).
3Some (Mas-Colell, Whinston, and Green 1995, p. 51) refer to it also as Walrasian Demand

correnspondece. In any case, the two terms can be used interchangeably. I think that the preference
for one over the other rests mainly on different attitudes versus the History of Economic Thought,
namely preferring Walras over Marshall as the earlier founded "general equilibrium research" or the
latter over the French since Marshall created "demand theory."
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x2

x1

x∗

xB(p, w)

Figure 2.3: The Utility Maximization Problem

3. Convexity/Uniqueness: If ⪰ is convex, then u(·) is quasi-concave, and x(p, w)
is a convex set. If ⪰ is strictly convex, then u(·) is strictly quasi-concave, and
x(p, w) is a singleton.

Proof. 1) Homogeneity derives directly by the fact that B(p, w) is Homogeneorus of
Degree zero. So, if prices and wealth are scaled by a positive coefficient alpha, then the
budget set does not change. The set of optimal bundles must be the same.

To see 2), notice that ⪰ are Locally non-satiated. This means that any open neigh-
borhood of x contains a bundle y such that y ≻ x. So, if p ·x ≤ w, we have y such that
p · x < p · y < w, thus contradicting x being the optimal choice.

To see 3), suppose u(·) is quasi-concave, and x, x′ ∈ x(p, w). We want to show that
x′′ = αx + (1 − α)x′ ∈ x(p, w), for all α ∈ [0, 1]. We know that ⪰ is represented by
an utility function, so u(x) and since x, x′ ∈ x(p, w), then we can write u(x) = u(x′).
Further, we know that:

p · x′′ = p ·
[
αx+ (1− α)x′

]
≤ w

Since p · x ≤ w and p · x′ ≤ w. Therefore, x′′ ∈ B(p, w). Then, since u(x′′) ≥ u(x) =
u(x′), x′′ ∈ x(p, w). The argument for strict quasi-concavity is similar. We have seen
that x′′ ∈ B(p, w). We want to show that u(x′′) > u(x) = u(x′). If this is true, then
x, x′ ̸∈ B(p, w). Therefore, B(p, w) can be at most a singleton.

It can be extremely useful to assess one important property of demand correspon-
dences (or functions), namely, that they are continuous functions. Then, we have the
following result:

Theorem 2.3.1. If u(·) is C2 and strictly quasi-concave, then x(p, w) is a continuous
function.

Proof. This is only a sketch of the proof. As seen, if u(·) is quasi-concave and C2,
then x(p, w) is a singleton. If it is a singleton, so it is not empty, then, by Berge’s

28



maximum theorem, as long as the objective function is continuous in the variable and
in the parameters, and the constraint set is bounded and continuous, then the value
function is continuous as well.

2.3.1 Solving the Consumer’s Problem

In this section, I want to provide a general discussion on how to solve the Consumer’s
problem, also offering some examples.

As seen, a useful assumption on utility functions is that they are continuous and
differentiable, other than quasi-concave. Notice that continuity is obtained by conti-
nuity of preferences, and if preferences are not continuous, they cannot be represented
by utility functions. Differentiability is always assumed because it is useful, but it is
not necessary. There can exist utility functions that are not differentiable, but that can
generate demand correspondences. If u(·) is C2, then the Utility Maximization Problem
can be solved using the Kuhn-Tucker Method. This is the main method. However, as
I will show, in many cases, it is not possible to use the Kuhn-Tucker Method.

Using the Karush-Kuhn-Tucker Method

The Consumer’s Problem is a parametric constrained optimization problem, where x
is the variable, and the parameters are given by p and w. The standard way of solving
these types of problems (with inequality constraints) is using the Kuhn-Tucker Method.
Then, we set up the so-called Lagrangian function:

L(x, λ) = u(x) + λ
(
w −

L∑
i=1

xipi
)
+

L∑
i=1

µixi

Where λ ≥ 0 is called Lagrange multiplier. Then, we write down the First-Order
Conditions (necessary):

∂u

∂xi
− λpi + µi = 0

Or equivalently, using the gradient vector of u(x), so:

∇u(x) =


∂u
∂x1...
∂u
∂xL

− λ

p1x1...
pLxL

 = 0

The other necessary conditions are given by Complementary Slackness:

λ
(
w − pixi) = 0 ∀i = 1, . . . , L

µixi = 0

When solving the problem, we can have two possible cases: one when all goods xi
are consumed in positive quantities; and a second when (at least) one good xj is not
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consumed at all. In the first case, by Complementary Slackness, we have µi = 0, and
then we can solve the FOCs as follows:

u(x)

∂xi
= λpi

This is equivalent to writing:
u(x)
∂xi

u(x)
∂xj

=
pi
pj

And we have interior solutions. This expression is the marginal rate of substi-
tution of good i for good j, namely the amount of good i that a consumer is willing
to give away to buy an additional unit of good j. In the simplified case of L = 2, this
simply corresponds to the slope of the budget line. This is a condition of optimality
because if, for example, the MRSi,j >

pi
pj

, then it could be the case that an increment
in consumption of good i could yield a positive change of utility, and then we are not
in an optimum.

Example 2.3.1. An example of a utility function that gives interior optimum is the
Cobb-Douglas utility function. Assume for simplicity that there are only two variables
x1, x2. Then, we have the following problem:

max
x1,x2∈X

xα1x
1−α
2

s.t

p1x1 + p2x2 ≤ w

Write the Lagrangian:

L(x1, x2, λ) = xα1x
1−α
2 + λ · [w − p1x1 + p2x2]

By the Kuhn-Tucker Method, we write down the F.O.C.s and the Complementary
Slackness Conditions:

• ∂ L
∂xi

= 0 for i = 1, 2

• λ · [w − p1x1 − p2x2] = 0

Write down the F.O.C’s:

∂ L
∂x1

= α · xα−1
1 x1−α

2 − λp1 − µ1 = 0

∂ L
∂x2

= (1− α) · xα1x−α
2 − λp2 − µ2 = 0

(2.1)

And the Slackness Condition:
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λ ·
[
w − p1x1 − p2x2

]
= 0

µ1 · x1 = 0

µ2 · x2 = 0

Slackness is satisfied if the multipliers (λ, µ1, µ2) ≥ 0,≫ 0 or is equal to 0. It is
apparent that µ1, µ2 cannot be different from zero. Indeed, if they are greater than zero,
we are in the trivial case where there is no consumption at all. Then, it remains to
check for λ. If λ is equal to zero, the problem simply becomes that of unconstrained
optimization of the Lagrangian (the constraint is multiplied by zero, and therefore it
disappears). Let’s explore the case when λ ≥ 0. In this case, the FOCs can be written
as:

∂ L
∂x1

= α · xα−1
1 x1−α

2 = λp1

∂ L
∂x2

= (1− α) · xα1x−α
2 = λp2

Then, we can solve using the Marginal Rate of Substitution:4

αxα−1
1 x1−α

2

(1− α)xα1x
−α
2

=
λp1
λp2

α

1− α
x−1
1 x2 =

p1
p2

1

x1
=

(p1
p2

)(1− α

α

) 1

x2

x1 =
(p2
p1

)( α

1− α

)
x2

Plug in the budget constraint and solve for x2:

p1

(p2
p1

)( α

1− α

)
x2 + p2x2 = w

α

1− α
x2 + p2x2 = w

x2

( αp2
1− α

+ p2

)
= w

x2

( p2
1− α

)
= w

x2 =
((1− α)w

p2

)
4Notice that this is not the only method. We can obtain the same result by solving the FOC for

λ and then solving the budget constraint. But it is a longer process, and furthermore, provides less
economic intuition
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Then plug in x1 and we obtain:

x1 =
(p2
p1

)( α

1− α

)((1− α)w

p2

)
x1 =

αw

p1

So, then, the Marshallian Demand of the Cobb-Douglas Utility Function is:

x(p, w) =
(αw
p1
,
(1− α)w

p2

)
This can be generalized, in the case of n-variables, as follows:

x(p, w) =
(α1w

p1
, . . . ,

αnw

pn

)
Suppose, however, that one good j is not consumed at all. In this case, by comple-

mentary slackness, we cannot rule out the possibility that µi be greater than zero, so we
cannot write ∇u(x) = λp, and inequality between the Marginal Rate of Substitution
and the price ratio can rise.

Example 2.3.2. A classical example of when there are corner solutions is given by the
so-called perfect substitute goods. Then, we have the following problem:

max
x1,x2∈X

x1 + x2

s.t.

x1p1 + x2p2 ≤ w

Notice that in this case, we cannot rule out the possibility that x1 or x2 be equal to zero.
So, setting up the Lagrangian, we have:

L(x, λ) = x1 + x2 + λ[w − x1p1 − x2p2] + µ1x1 + µ2x2

Taking the FOCs and CS, we have:

∂ L
∂x1

= 1− λp1 + µ1 = 0

∂ L
∂x2

= 1− λp2 + µ2 = 0

λ[w − x1p1 − x2p2]

µ1x1 = 0

µ2x2 = 0
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Solving the FOCs, we have three cases when p1 > p2, then all the income is spent in
good 1. When p1 ≤ p2, then all the income is spent in good 2. Or finally, if the prices
are equal, then the income is distributed between the two goods. Then, the Marshallian
demand is:

x(p, w) =


(

w
p1
, 0
)(

w−p2x2

p1
, w−p1x2

x2

)(
0, w

p2

)
Then we have two corner solutions and one solution that spans the entire budget line.

Finally, I will provide an example of a Quasi-Linear utility function. With this class
of utility functions, corner solutions can arise.

Example 2.3.3. Let’s see an example in closed form:

v(p, w) = max
x1,x2≥0

ln (x1 + 1 + x2

s.t.

p1x1 + x2 ≤ w

Notice that the utility function is linear in good 2, and the price of 2 is normalized to
1. Set up the Lagrangian:

L(x1, x2, λ) = ln (x1 + 1) + x2 + λ
[
w − p1x1 − x2

]
The FOCs are:

∂ L
∂x1

=
1

x1 + 1
− λp1 = 0

∂ L
∂x2

= 1− λ = 0

∂ L
∂λ

= w − p1x1 − x2 = 0

The Complementary Slackness is:

λ(w − p1x1 − x2) = 0

Since we cannot rule out the possibility of corner solutions, we must examine all the
possible cases, x1, x2 > 0, x1 > 0, x2 = 0 and x1 = 0, x2 > 0.

Let’s see x1, x2 > 0. From the FOCs,λ = 1, then:

1

x1 + 1
= p1

x1 + 1 =
1

p1

x1 =
1

p1
− 1
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Plugging x∗1 into the budget constraint, we have:

p1

( 1

p1
− 1

)
+ x2 = w

1− p1 + x2 = w

x2 = w − (1− p1)

Then:
x∗1 =

1

p1
− 1 and x∗2 = w − (1− p1)

Let’s see now x1 = 0 and x2 > 0. The FOCs are:

∂ L
∂x1

=
1

x1 + 1
− λp1 ≤ 0

∂ L
∂x2

= 1− λ = 0

∂ L
∂λ

= w − p1x1 − x2 = 0

Notice that the first FOC is less or equal to 0.Then:

1− p1 ≤ 0

1 ≤ p1

The demand is:
x∗1 = 0 and x∗2 = w

Let’s see now x1 > 0 and x2 = 0. The FOCs are:

∂ L
∂x1

=
1

x1 + 1
− λp1 = 0

∂ L
∂x2

= 1− λ ≤ 0

∂ L
∂λ

= w − p1x1 − x2 = 0

In this case:
x∗1 =

1

p2
− 1 and x∗2 = 0

From the budget constraint, we have that:

p1 ≤ 1− w

Therefore, we can write the Marshallian demand associated to this Quasi-Linear Utility
function:

x∗(p, w) =


x∗1 = 0, x∗2 = w if p1 ≥ 1

x∗1 =
1
p2

− 1, x∗2 = 0 if p1 ≤ 1− w

x∗1 =
1
p1

− 1, x∗2 = w − (1− p1) if p1 ∈ (1− w, 1)
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Notice that FOCs and CS are necessary conditions but, in most cases, not sufficient.
They became sufficient when u(·) is quasi-concave and monotone, and ∇u(x) ̸= 0 for
all x ∈ RL

+. To check for Quasi-Concavity, one has to check if the bordered hessian
matrix is positive.

Solving without the Lagrangian

Sometimes, however, we cannot use the FOCs. The typical scenario when FOCs cannot
be used is when there is a non-differentiable utility function, such as a function with
some kinks. In that case, other attempts to solve the problem must be guessed, as the
following example shows. Unfortunately, there is no general rule to do so. One must
mainly rely on economic intuition, trying to guess an interior solution and then find
some cases to discuss. In this section, I will provide a general example of complementary
goods and a closed-form example.

Example 2.3.4. We have seen the case of (perfect) complements good as an example of
homothetic utility functions. Roughly speaking, this class of utility functions concerns
goods that can be consumed only in a linear combination together. The general form
this utility function is written is:

u(x1, . . . , xn) = min
{
x1, . . . , xn

}
Without loss of generality, let’s see the case when n = 2:

u(x1, x2) = min
{
x1, x2

}
s.t.

p1x1 + p2x2 ≤ w

Since they are perfect complements, the demand is a kink point, namely y = x. Substi-
tuting in the budget constraint, we have:

p1x+ p2x = w

x(p1 + p2) = w

x =
w

p1 + p2

Therefore:
x∗(p, w) =

w

p1 + p2
,

w

p1 + p2

Example 2.3.5. Let’s see again the case of complements. Let’s see now this closed-
form example:

max
x,y≥0

min
{
3(x− 1), y − 2

}
s.t.
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pxx+ pyy ≤ w

Since x and y are perfect complements, we can solve the problem as follows:

3(x+ 1) = y − 2

3x+ 3 = y − 3

y = 3x− 1

Plugging into the budget constraints, we have:

pxx+ py(3x− 1) = w

pxx+ py3x− py = w

x(px + py3) = w + py

x =
w + py
px + 3py

and y is
y = 3 ·

( w + py
px + 3py

)
− 1 =

3w + 3py
px + 3py

− px + 3py
px + 3py

=

3w + 3py − px − 3py
px + 3py

=

3w − px
px + 3py

Since x, y ≥ 0, then, to have y ≥ 0, we must have that px
3
. So, the Marshallian demand

associated to this utility function is:

x∗(p, w) =

{
w+py
px+3py

, 3w−px
px+3py

if py
3
≤ w

w
px
, 0 if py

3
≥ w

2.3.2 Comparative Statics and demand correspondence

The main advantage of using the demand function is that this is an object that can
be linked to actual choices. This makes it possible to study the effects on demand
of the changes in some parameters, like a rise in prices or wealth. For instance, we
associate demand theory with the "law of demand": namely, if the price rises, the
demand decreases. Mathematically, this means that ∂xi

∂pi
< 0, i = 1, . . . , L. Using actual

demand functions, we can verify this, as well as other hypotheses.
First, however, we need to verify a further property of the demand functions, namely

their differentiability.

Theorem 2.3.2. Suppose that:
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1. u(·) is C2

2. u(·) is strictly quasi-concave

3. ∇u(x) > 0 for all x ∈ RL
+

4. the Bordered Hessian is non-singular, then invertible for all x

Then, the demand function x(p, w) is differentiable.

Proof. (A sketch) A powerful result in the analysis is the Implicit Function The-
orem.5 This permits to describe the behavior of an implicit function f(x, y) = c,
namely a function that cannot be represented as y = f(x) in an open neighborhood
(x0, y0). This result can be very useful in economics because some functions cannot be
represented in closed form. Let’s write a utility function u(x) (assume, without loss of
generality, that x = (x1, x2). The Lagrangian is L(x, p, w). The FOCs can be written
as a system of equations depending on (p, w). Then, we can define:

∂ L
∂λ

= f1(λ(p, w),x(p, w), p, w)

∂ L
∂x1

= f2(λ(p, w),x(p, w), p, w)

∂ L
∂x2

= f3(λ(p, w),x(p, w), p, w)

Then, by the Implicit Function Theorem, we can write the L(x, λ, p, w) as:

L(x(p, w), λ(p, w), p, w).

Let’s apply the theorem:
∂λ
∂w

∂λ
∂p1

∂λ
∂p2

∂x1

∂w
∂x1

∂p1

∂x1

∂p2
∂x2

∂w
∂x2

∂p1

∂x2

∂p2


︸ ︷︷ ︸

Dp,w(λ,x)

= −


∂f1
∂λ

∂f1
∂x1

∂f1
∂x2

∂f2
∂λ

∂f2
∂x1

∂f2
∂x2

∂f3
∂λ

∂f3
∂x1

∂f3
∂x2


−1

︸ ︷︷ ︸
Dλ,xfi


∂f1
∂w

∂f1
∂p1

∂f1
∂p2

∂f2
∂w

∂f2
∂p1

∂f2
∂p2

∂f3
∂w

∂f3
∂p1

∂f3
∂p2


︸ ︷︷ ︸

Dp,wfi

But notice that Dλ,xfi can be written as a bordered hessian since the submatrix (2×2)
is made up by the second derivatives of the original utility functions. Then, by condition
4) of the theorem, x(p, w) is differentiable.

Example 2.3.6. Take a special case of Cobb Douglas, u(x1, x2) = x1x2. The Consumer
Problem is:

max
x1,x2∈X

x1x2

5See the notes on Math for Econ.
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s.t.

p1x1 + p2x2 ≤ w

Take the FOCs:
w − p1x1 − p2x2 = 0

x2 − λp1 = 0

x1 − λp2 = 0

To know how the demand varies as the parameters vary, we can solve the system without
necessarily solving the FOCs and finding the demand. Then, by IFT, we have:

∂λ
∂w

∂λ
∂p1

∂λ
∂p2

∂x1

∂w
∂x1

∂p1

∂x1

∂p2
∂x2

∂w
∂x2

∂p1

∂x2

∂p2

 = −

 0 −p1 −p2
−p1 0 1
−p2 1 0

−1 1 −x1 −x2
0 −λ 0
0 0 −λ


2.3.3 The Indirect Utility Function

We can define, for each (p, w), the solution to the Utility Maximization Problem as
v(p, w) = u(x∗), where x∗ is the Marshallian demand. The function v(p, w) is called
the indirect utility function. This is very useful as an analytical tool since it does
not depend on preferences over a bundle of alternatives but on actual choices, namely
the consumer’s demand, which is a function of price and wealth. Therefore, through the
indirect utility, we can, for instance, answer policy and welfare questions about actual
choices. The following proposition identifies the basic properties of v(p, w).

Proposition 6. Suppose that u(·) is a continuous utility function representing a locally
non-satiated preference relation ⪰ on X = RL

+. Then, v(p, w) is:

1. Homogeneous of degree zero

2. Strictly increasing in w and non-increasing in pi for any i

3. Quasi-convex (the lower contour set of v(p, w) is convex

4. Continuous and differentiable in p and w

Proof. Proof of continuity and differentiability comes directly from the continuity and
differentiability of the demand function. To see that v(p, w) is strictly increasing in w,
notice that this, intuitively, means that as long as wealth increases, then indirect utility
does. Suppose x̂ ∈ B(p, w), and take B(p, w + ∆). Then x̂ ∈ B(p, w + ∆), and then
u(x̂ = v(p, w). A similar argument goes for non-increasing in p. This means that if p
increases, utility does not (but also does not necessarily decrease, it can be constant).
x̂ ∈ B(p, w). Then x̂ ∈ B(p−∆), w), so u(x̂) = v(p, w). Homogeneity of degree zero is
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a direct consequence of the same property for B(p, w). Let’s see quasi-convexity. Recall
the definition:

v(αp+ (1− α)p′, w) ≤ max
{
v(p, w), v(p′, w)

}
In other words, the lower contour set must be convex. This is represented in Figure 4
(notice that this is a price indifference curve, and the consumer gets worse as the price
goes up, so as the curve moves toward the right).

p2

p1

v(p1, p2, w)

p∗ = (p1, p2)

B(p, w)

Figure 2.4: A price indifference curve

Take two arbitrary prices p, p′ and α ∈ [0, 1]. Then, we can write:[
αp+ (1− α)p′]x ≤ w

αpx+ (1− α)p′x ≤ w

Then, we can have p · x ≤ w, p′ · x ≤ w, or both (if both are not true, then this convex
combination is not less than w). Then, we can write:

x ∈ B(αp+ (1− α)p′, w) ⊂ B(p, w) ∪B(p′, w)

Notice that B(p, w) ∪B(p′, w) is not necessarily a convex set. We can write then:

v(αp+ (1− α)p′, w) = max
x∈B(αp+(1−α)p′,w)

u(x) ≤ max
x∈B(p,w)∪B(p′,w)

u(x)

We have expanded the feasible set, so in an optimization problem, we are always
best off. If x ∈ B(p, w), then we have v(p, w). if x ∈ B(p′, w), then we have v(p′, w).
So, we can write:

v(αp+ (1− α)p′, w) ≤ max
{
v(p, w), v(p′, w)

}
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Example 2.3.7. Let’s see an example of v(p, w) with a (logarithmic) Cobb-Douglas
utility function, u(x1, x2) = α log x1 + (1− α) log x2. Recall that:

x1(p, w) =
αw

p1

x2(p, w) =
(1− α)

p2

Then, substituting in u(x1, x2), we have:

v(p, w) = α log
αw

p1
+ (1− α) log

(1− α)w

p2

2.4 The Expenditure Minimization Problem

The basic idea of the expenditure minimization problem (EMP), (thanks to McKen-
zie 1957), is that of finding those values of x that minimize the total expenditure, given
a certain utility level to be attained. Then, the problem can be formulated as follows:

e(p, u) = min
x≥0

p · x

s.t

u(x) ≥ 0

x2

x1
{x ∈ R2

+ : p · x = p · x∗}

x

x∗

{x ∈ R2
+ : u(x) ≥ u}

Figure 2.5: The Expenditure Minimization Problem

Whereas the Utility Maximization Problem was about the maximum amount of x
needed to maximize utility under a budget constraint, the Expenditure minimization
instead is about the minimum amount of expenditure needed to reach a definite level
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of utility. In other words, to solve the EMP means to seek the minimum amount the
consumer must spend at price p to get for himself utility level u. Therefore, the optimal
bundle x∗ is the bundle that solves the EMP, that is, that minimizes p · x subject to a
utility constraint.

Geometrically, it is the point of the set{
x ∈ Rl

+ : u(x) ≥ u
}

That lies on the least possible budget line associated with a definite price vector
(see Figure above).

2.4.1 The Expenditure Function and the Hicksian Demand

The value function for the EMP is given by e(p, u), called the expenditure function.
Thus e(p, u) gives the minimum expenditure required to achieve utility u at prices p.

The set of optimal consumption bundles in the EMP is known as the Hicksian
Demand Correspondence (or Function, if univalued), defined as h(p, u) ∈ Rl

+.

h(p, u) = argmin
x

n∑
i=1

p · x s.t. u(x) ≥ u (2.2)

In other words, h(p, u) is the set of consumption bundles that the consumer would
purchase at prices p if she wished to minimize her expense but still achieve utility u.

Then, exactly like the Marshallian Demand, x(p, w) is the solution to the UMP,
at given (p, w), h(p, u) is the solution to the expenditure minimization problem at given
(p, u).

Let’s see now the basic properties of e(p, u) and h(p, u).

Proposition 7. 6 Suppose u(.) is a continuous utility function representing ⪰ Locally
Non Satiated and defined on X = Rl

+. Then e(p, u) is:

1. Homogeneous of Degree one in p

2. Strictly increasing in u and non-decreasing in pl, ∀l = 1, . . . , L

3. Concave in p

4. Continuous in p and u

Proof. To see that e(p, u) is Homogeneous of degree one in p, note that in the EMP if
p changes, the utility is unaffected. In other words, the EMP now becomes minα · x
subject to u(x) ≥ u. If x∗, then e(αp, u) = αp · x∗ = αe(p, u).

6Proposition 3.E.2, Mas-Colell, Whinston, and Green 1995, pp. 59–60
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e(p, u) being not strictly increasing in u means that if u increases, then the value of
e(p, u) does not. To see this, assume x′ and x′′ as optimal consumption bundles for the
utility levels u(x′) and u(x′′), where u(x′′) > u(x′) and p · x′′ < p · x′. Take a bundle
x̂ = αx′′ (with α ∈ (0, 1)). By continuity of u(.), if α ∼ 1, then u(x̂) > u(x′) and
p · x̂ < p · x′. But then, x′ is not optimal in the EMP.

Let’s see now that e(p, u) is not decreasing in princes. This means that when p
decreases, e(p, u) does not. Assume p′′ and p′, where p′′l ≥ p′l and p′′k = p′k∀l ̸= k. Let
x′′ be an optimizing consumption bundle in the EMP for prices p′′. Then e(p′′, u) =
p′′ · x′′ ≥ p′ · x′ = e(p′, u)

To see concavity, assume ū and p′′ = αp + (1 − α)p′, (with α ∈ [0, 1]). Suppose x∗
is optimal in the EMP at prices p′′. Then:

e(p′′, ū) = p′′ · x∗ =[
αp+ (1− α)p′

]
x∗ =

αp · x∗ + (1− α)p′ · x∗ ≥
≥ αe(p, ū) + (1− α)e(p′, ū)

(2.3)

Whereas: αp ·x∗+(1−α)p′x∗ ≥ αe(p, ū)+(1−α)e(p′, ū), αe(p, u∗)∗ (1−α)e(p′, u∗),
and u∗ = u(x∗) > ū

The Hicksian Demand instead has three basic properties:

Proposition 8. 7 Suppose u(·) is a continuous utility function representing ⪰ Locally
Non Satiated and defined on X = Rl

+. Then, for any p >> 0 h(p, u) is:

1. Homogeneous of Degree Zero in p

2. No excess utility: ∀x ∈ h(p, u), u(x) = u

3. Convexity/uniqueness: if ⪰ is convex, then h(p, u) is a convex set; and if ⪰ is
strictly convex so that u(.) is strictly quasi-concave, then there is a unique element
in h(p, u).

Proof. Since the constraint is the same in the EMP for (αp, x) and (p, x), then:

min
u(x)≥u

αp · x = α min
u(x)≥u

p · x

Suppose that there is some x ∈ h(p, u) such that u(x) > u ≥ u(0). Take a bundle
x′ = αx, with (α ∈ (0, 1). Then p · x′ < p · x, and since u(·) is continuous (by the
Intermediate Value Theorem), there is an α such that u(x′) ≥ u. This contradicts the
assumption that x ∈ h(p, u).

Note that h(p, u) = {x ∈ Rl
+ : u(x) ≥ u} ∪ {x : p · x = e(p, u)} is the intersection to

two convex sets, and hence is convex. If preferences are strictly convex, x, x′ ∈ h(p, u),
then for α ∈ [0, 1], x′′ = αx + (1 − α)x′ ≻ x and p · x′′ = e(p, u). But this contradicts
"no excess utility."

7Proposition 3.E.3, Mas-Colell, Whinston, and Green 1995, pp. 59–60
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Intuitively, the meaning of concavity is simply that if there is an optimal consump-
tion bundle in the EMP, whose value is given by e(p, u), if p changes so that the new
price vector is p′, then the upper bound of the new consumption bundle is given by
p′ · x, a linear transformation of p · x.

Another result allows us to link h(p, u) and the Compensated Law of the De-
mand. In a nutshell, demand and prices move in opposite directions for price changes
that are accompanied by Hicksian Wealth Compensations. This means that hk(p, u)
is decreasing in pk, i.e., Hicksian Demand is always downward sloping. Note that this
is not always true in the case of the Marshallian, where, for example, we can find such
situations as those involving Giffen Goods (the demand rises as the price rises).

The following proposition links the Hicksian Demand and the compensated law of
demand.

Proposition 9. 8 Suppose u(·) is a continuous utility function representing ⪰ Locally
Non Satiated and defined on X = Rl

+, and h(p, u) is uni-valued, for any p >> 0. Then
h(p, u) satisfies the Compensated Law of Demand: for all p and p′:

(p′ − p) · [h(p′, u)− h(p, u)] ≤ 0 (2.4)

Proof. In the EMP, at prices p, h(p, u) is optimal. This means that it allows the
consumer to attain the same level of utility, but with a lesser expenditure. That is:

p′ · h(p′, u) ≤ p′ · h(p, u)
p · h(p, u) ≤ p · h(p,′ u)

(2.5)

Subtracting these equations yields the equation (4). Indeed:

p′ · h(p′, u)− p′ · h(p, u)− p · h(p, u) + p · h(p,′ u) =
(p′ − p) · [h(p′, u)− h(p, u)] ≤ 0

(2.6)

We can see why the Hicksian Demand is always downward sloping in the Figure
below. The original prices for x1 and x2 determine a bundle set B(p, w) and h(p, u) is
hA. As prices change to reach the same utility, the new bundle set becomes B(p′, w). So
then, the new h(p, u) is hB, which is still on the indifference Curve I. This is because
the Hicksian Demand refers to an EMP problem, so then, given a utility level, the
rational consumer must find the best way of reaching it.

In the Marshallian demand setting, instead, the problem is different since the con-
straint is the budget set. If prices change, and so does the budget set, the new optimal
x∗ lies on a different indifference curve.

8Proposition 3.E.4. Mas-Colell, Whinston, and Green 1995, pp. 62–3
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x1

x2

I = {x ∈ R2 : u(x) = x}

hB = h(p′u)

hA = h(p, u)

B(p′, w)B(p, w)

Figure 2.6: Changes in the Hicksian Demand as prices change

Example 2.4.1. Let’s see an example. Take a log Cobb-Douglas Utility Function.
Then, the Expenditure Minimization Problem is the following:

e(p, u) = p · x

s.t

α ln (x1) + (1− α) ln (x2) ≥ u

Where α ∈ (0, 1), p1, p2 > 0 and u ∈ R. Set up the Lagrangian:

L(x1, x2, λ) = p1 · x1 + p2 · x2 + λ
[
u− α ln (x1)− (1− α) ln (x2)

]
+ µ1x1 + µ2x2

Since it is a Cobb-Douglas Utility function, we can exclude corner solutions. Then,
writing down the FOCs and Complementary Slackness:

∂ L
∂p1

= p1 − λ
α

x1
= 0 ⇒ x1

α
λ =

1

p1
= x1 =

α

p1
λ

∂ L
∂p2

= p2 − λ
1− α

x2
= 0 ⇒ x2

1− α
λ =

1

p2
= x2 =

1− α

p2
λ

Plugging x1 and x2 in the budget constraint, we have:

α ln
(λα
p1

)
+ (1− α) ln

((1− α)λ

p2

)
= u

(λα
p1

)α(1− α)λ

p2

)1−α

= eu

Since λα and λ1−α, we cannot take them out from the brackets, and furthermore, they
sum to 1. So:

λ
( α
p1

)α(1− α)

p2

)1−α

= eu
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λ =
(p2
α

)α( p2
1− α)

)1−α

eu

Plugging λ in x1 and x2, and solving, gives us:

x1 =
(p1
α

)α( p2
1− α

)1−α

· 1

p1
· α · eu

pα−1
1

( p2
1− α

)1−α

euα1−α( αp2
p1(1− α)

)1−α

eu = h1(p, u)

(2.7)

and, following the same logic:

x2 =
(p1
α

)α( p2
1− α

)1−α

· 1− α

p2
· eu(p1

α

)α

(1− α)αp−α
2 eu((1− α)p1

p2α

)α

eu = h2(p, u)

(2.8)

Therefore, we can write down the expenditure function:

e(p, u) =p · h(p, u) = p1 · h1(p, u) + p2 · h2(p, u)

p1

( αp2
p1(1− α)

)1−α

eu + p2

((1− α)p1
p2α

)α

eu =

eu
[
pα1

( αp2
1− α

)1−α

+ p1−α
2

(1− α)p1
α

)α]
=

eupα1p
1−α
2

[( α

1− α

)1−α

+
(1− α

α

)α]
=

eupα1p
1−α
2

[α1−α · αα + (1− α)α · (1− α)1−α

(1− α)1−ααα

]
=

eupα1p
1−α
2

[ α + (1− α)

(1− α)1−ααα

]
=

eupα1p
1−α
2

[ 1

(1− α)1−ααα

]
=

eupα1p
1−α
2

[
(1− α)α−1α−α

]

(2.9)

It is easy to see that strictly increases in u and pi. To see that it is Homogeneous
of degree 1 in p:

e(αp, u) = αp1 · h1(p, u) + αp2h2(p, u) =

αp1

( αp2
p1(1− α)

)1−α

eu + αp2

((1− α)p1
p2α

)α

eu =
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eu
[
αpα1

( αp2
1− α

)1−α

+ αp1−α
2

(1− α)p1
α

)α]
=

euαpα1αp
1−α
2

[( α

1− α

)1−α

+
(1− α

α

)α]
=

euα
(
pα1p

1−α
2

)[α1−α · αα + (1− α)α · (1− α)1−α

(1− α)1−ααα

]
=

αeu
(
pα1p

1−α
2

)[ α + (1− α)

(1− α)1−ααα

]
=

αeu
(
pα1p

1−α
2

)[ 1

(1− α)1−ααα

]
=

αeu
(
pα1p

1−α
2

)[
(1− α)α−1α−α

]
= αe(p, u)

2.4.2 The dual problem

The Expenditure minimization problem (EMP) is the dual of the Utility maximization
problem (UMP). Then, we have the following important result:

Proposition 10. 9 Let u(·) be a continuous utility function representing ⪰ Locally Non
Satiated and defined on X = Rl

+, and that price vector is p >> 0. Then:

1. If x∗ is optimal in the UMP when w > 0, then x∗ is optimal too in the EMP,
when the required utility level is u(x∗), and the minimized expenditure level in this
EMP is w

2. If x∗ is optimal in the EMP when the required utility level is u > u(0), then x∗ is
optimal in the UMP when wealth is p · x∗. Moreover, the maximized utility level
in this UMP is u

Proof. Let’s start with 1) We can show this by contradiction. Assume x∗ is not optimal
in the EMP. Then, it exists a x′ such that u(x′) > u(x∗), and p · x < p · x∗ ≤ w. Still,
however, ⪰ are LNS, so that we can find an x′′ such that u(x′′) > u(x′) and p · x′ < w.
But then x′′ ∈ B(p, w) and u(x′′) > u(x∗). This contradicts the assumption of x∗ being
optimal in the UMP. Finally, since x∗ solves the UMP when prices are p, then p·x∗ = w.

Let’s see 2) Since u > u(0), then x∗ > 0 and p · x∗ > 0. Suppose x∗ is not optimal.
Then there exist a x′ > x∗ such that u(x′) > u(x∗) and p · x′ < p · x∗. Take a bundle
x′′ = αx′ (with α ∈ (0, 1)). By continuity of u(.), if α ∼ 1, then u(x”) > u(x∗) and
p · x” < p · x∗. But this contradicts the optimality of x∗ in the EMP. Then x∗ must be
optimal in the UMP when w = p · x and maxx u = u(x∗).

9Proposition 3.E.3, Mas-Colell, Whinston, and Green 1995, pp. 59–60
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Note finally that a solution to the EMP always exists under very general conditions:
the constraint set must be non-empty.

From the duality property, we can recover the following results. Fixing (p, w), for
all p << 0 and u ≥ u(0), by definition, v(p, u) = maxx∈B(p,w) u(x), and therefore
v(p, w) = u(x∗). That is, v(p, w) is the maximum utility attainable at price p and
wealth w. e(p, u) then can be thought of as the minimum expenditure needed to attain
utility v(p, u). So we can write:

e(p, v(p, u)) ≤ w

Furthermore, by Walras’ Law p · x∗ = w. So, we can have e(p, v(p, u)) = w. Similarly,
as e(p, u) is the minimum spending to attain utility u, we can write v(p, e(p, u) ≥ u,
since v is the highest utility achievable given income e(p, u).

From the results above, we can relate the Hicksian Demand and the Marshallian
Demand as follows:

• h(p, u) ≡ x(p, e(p, u)), since e(p, u) ≡ e(p, v(p, w)) ≡ w. The Marshallian Demand
at income w is equal to the Hicksian Demand at utility v(p, w).

• x(p, w) ≡ h(p, v(p, w)) since v(p, w) ≡ v(p, e(p, u)) ≡ u. The Hicksian Demand at
utility u is the same as the Marshallian Demand at income e(p, u).

In particular, the last identity is important since it shows that the Hicksian De-
mand is equal to the Marshallian Demand at the minimum income necessary, at the
given prices, to achieve the desired level of utility. Therefore, the Hicksian Demand is
simply the Walrasian Demand function for the various goods if the consumer’s income
is "compensated" so as to achieve some target level of utility.

These identities further imply that for a fixed price vector p, e(p, ·) and v(p, ·) are
one the inverse of the other. This means that:

e(p, u) = v−1(p;u)

Since v(p, w) strictly increases in wealth, and v(p, e(p, u)) = u. And:

v(p, w) = e−1(p;w)

Since e(p, u) strictly increases in u, and e(p, u(p, w)) = w.
Finally, there are two results that make it possible to recover the Hicksian demand

from the expenditure function and the Marshallian demand from the indirect utility.
Both these results exploit the Envelope Theorem10and the properties of continuity
and differentiability of v(p, w) and e(p, u).

10Roughly speaking, this theorem states that if we can express the optimal solution of the consumer
problem as a differentiable parametric function, then if we change some parameters of the objective,
changes in the optimizer do not contribute to the change in the objective function. In the case of the
consumer’s problem, since v(p, u) = maxx∈B(p,w) u(x), then, we can write:

dv(p)

dpi
=

∂ L(x∗; p)

∂p

More in the Math notes.
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The first of these two results is the Shephard’s Lemma.

Proposition 11 (Shephard’s Lemma). Suppose that u(·) is a continuous utility function
representing Locally Non Satiated preference ⪰ and suppose that h(p, u) is a function.
Then, the e(p, u) is differentiable in p, and for all i = 1 . . . , n

∂e(p, u)

∂pi
= hi(p, u) (2.10)

Proof. As seen above, e(p, u) is the value function associated to the EMP. Therefore,
we can write:

e(p, u) = min
x≥0

p · x

s.t

u(x) ≥ u

Taking the Lagrangian of the equation above gives:

L(p, u, λ) =
n∑

j=1

pj · xj + λ[u− u(x)]

Let’s apply now the Envelope Theorem:

∂e(p, u)

∂pi
=
∂ L
∂pi

= x∗i ∀x∗ ∈ h(p, u) (2.11)

Where x∗i is the Hicksian Demand for good xi

A result similar to Shephard’s Lemma, but for Utility Maximization and Marshallian
Demand, is the Roy’s Identity. This presents a way to derive the Marshallian Demand
Function of good i for some consumer from the Indirect Utility Function, v(p, w) of that
consumer.

Proposition 12 (Roy’s Identity). Let u(·) be continuous and representing LNS and
strictly convex ⪰, and u(·) is differentiable. Then:

xi(p, w) = −
∂v(p,w)

∂pi
∂v(p,w)

∂w

for i = 1, . . . , k

Proof. 11 We know that if x∗ is optimal in the UMP, then it is optimal also in the EMP.
Therefore we can write :

x(p, w) ≡ h(p, u)

11Based on the proof in Varian 1992, pp. 106–7
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at given p, w, u. Furthermore, we know also that:

u ≡ v(p, e(p, u))

That is, no matter what the prices are, if the consumer has the minimal income to get
utility u, at prices p, then the maximal utility is u.

We can differentiate with respect to p and obtain:

∂v(p, e(p, u))

∂pi
+
∂v(p, e(p, u)

∂pi
· ∂e(p, u)

∂pi
= 0

Note that:
∂v(p, e(p, u)

∂pi
· ∂e(p, u)

∂pi
≡ ∂v(p, w)

∂w
· ∂e(p, u)

∂pi

and
∂e(p, u)

∂pi
≡ hi(p, u) ≡ xi(p, w)

These identities hold for all p, w. Therefore, by rearranging, we have:

−∂v(p, w)
∂w

xi(p, w) =
∂v(p, w)

∂pi
=

xi(p, w) = −
∂v(p,w)

∂pi
∂v(p,w)

∂w

Example 2.4.2. Let’s see again the example of the log Cobb-Douglas utility function:

u(x1, x2) = α ln (x1) + (1− α) ln (x2)

Recall that:
x1 =

αw

p1

x2 =
(1− α)

p2

Then, v(p, w) is:

v(p, w) = α ln
(αw
p1

)
+ (1− α) ln

((1− α)w

p2

)
=

v(p, w) = α ln
( α
p1

)
+ (1− α) ln

((1− α)

p2

)
+ ln (w)

Since e(p, u) = w and v(p, w) = u, and rearranging terms, we can write:

ln e(p, u) = u− α ln
( α
p1

)
− (1− α) ln

((1− α)

p2

)
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Solving for e(p, u):

e(p, u) =
eu(

α
p1

)α(
(1−α)
p2

)1−α

e(p, u) = eu
(p1
α

)α( p2
(1− α)

)1−α

e(p, u) = eupα1p
α
2

[
α−α(1− α)α−1

]
Notice that this is the same result of (9). To find the Hicksian demand, we can use the
identity h(p, u) = x(p, e(p, u)). Then:

x1(p, e(p, u)) =
α

p1
e(p, u) =

α

p1
eupα1p

α
2

[
α−α(1− α)α−1

]
=

eu
p1−α
2

p1−α
1

[
(1− α)α−1α1−α

]
=

eu
p1−α
2

p1−α
1

[( α

(1− α)

)1−α

] =

eu
( αp2
(1− α)p1

)1−α

= h1(p, u)

(2.12)

This is equal to (10). Following the same logic, we can find h2(p, u).
Finally, notice that using Roy’s Identity, we obtain x1(p, w) and x2(p, w). Indeed:

x1(p, w) =−
∂v(p,w)
∂p1

∂v(p,w)
∂w

=

−
− α

p1
1
w

=
αw

p1

(2.13)

2.5 The Slutsky Equation

At this point one could question what is the meaning of the results above, and more
in general, of all the Consumer Theory in such a mathematical fashion. The object
of consumer theory must be to analyze how a rational consumer reacts when he faces
some changes in prices and wealth. There are some results (listed below) that describe
the rational consumer’s behavior with regard to her Marshallian Demand. However,
in order to fully assess this point, it is not sufficient to rest upon the UMP. Indeed,
the total change can be decomposed into two parts, one that involves the Marshallian
Demand and one that involves the Hicksian Demand.

Note, however, that the Hicksian Demand is not directly observable (one of its
parameters is u). Still h(p, u) is computable through the Marshallian Demand, which
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is observable (in principle). We have seen that there are some important results in
recovering Hicksian Demand and Marshallian Demand from the Expenditure Function
and Indirect Utility (i.e., Shephard’s Lemma and Roy’s identity). It is important now
to relate h(p, u) and x(p, w) in a more general way in order to make possible a detailed
analysis of how a change in the prices affects the change in the demand.

It is easy to have some intuition on why changes in prices or wealth have some effect
on the demand. For what concerns the Marshallian Demand, i.e., the solution to the
UMP for all prices and income levels, there are some important results worth briefly
recapping.

The Wealth Effects indicates how the demand changes when wealth changes. This
is represented by the following (1× L) vector:

Dwx(p, w) =


∂x1(p,w)

∂w...
...

∂xL(p,w)
∂w

 ∈ RL (2.14)

The Price Effects instead shows how the change in the price of one good affects
the demand for all the goods. The following square matrix represents these effects:

Dpx(p, w) =


∂x1(p,w)

∂p1
. . . ∂x1(p,w)

∂pL...
...

∂xL(p,w)
∂p1

. . . ∂xL(p,w)
∂pL

 (2.15)

Finally, these Substitution Effects (i.e., Wealth Effects and Price Effects) can be
expressed by the following square matrix called Slutsky Matrix:

S(p, w) =


∂x1(p,w)

∂p1
+ ∂x1(p,w)

∂w
x1(p, w) . . . ∂x1(p,w)

∂pL
+ ∂x1(p,w)

∂w
xL(p, w)

...
...

...
∂xL(p,w)

∂p1
+ ∂xL(p,w)

∂w
x1(p, w) . . . ∂xL(p,w)

∂pL
+ ∂xL(p,w)

∂w
xL(p, w)

 (2.16)

The results above make clear a very simple and intuitive fact. Assume a change
in prices, say a raising of pk. Then the consumer faces two different situations: first,
the good k is more expensive relative to other goods, so one can expect a decline in
k’s consumption, and depending on the relation between k and other goods, it could
be the case that even their consumption falls. In any case, there is a "substitution"
or "cross-substitution" effect. Second, the consumer’s real income has declined. If k
is more expensive, the more it raises, the less can be spent on the other goods of the
bundle. The issue is how to explore this result analytically.

One way of thinking about this problem is how to compensate the consumer for
the increase of pk by giving her some ∆w so that her real income is the same as before.
This allows us to isolate the effect of a shift in relative prices from the effect a change

51



x2

x1

xA

xC

xB
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Figure 2.7: Slutsky and Hicksian Compensation

in prices has on the real income. The problem is now of determining how much ∆w
must be. There are two ways of answering this question:

• Slutsky Compensation is that ∆wS such that the consumer can buy back her
original old optimal bundle x. This can be written as w + ∆ws. Note, however,
that the consumer can now choose a different bundle since the old one is no longer
optimal.

• Hicksian Compensation is that change in wealth, ∆wh, which allows the con-
sumer to maintain her utility. Still note that, as seen before, the Hicksian Demand
satisfies the Compensated Law of Demand, and therefore, as apparent in Figure
2, Hicksian Demand is a form of compensated demand.

These compensations are represented graphically in Figure 7. The consumer’s orig-
inal demand, at (p, w) is xA. Then, the price of x2 rises so that the new budget set
is B(p′, w). To compensate the consumer in order to stay on the original indifference
curve, her new real income must be added ∆wh (Hicks Compensation) so to reach the
red dashed line (the Hicksian Compensation Budget Line). The new demand is xB.
In order instead of making the old demand xA allowable, the consumer must be com-
pensated with ∆ws (Slutsky Compensation) to reach the dashed blue line (the Slutsky
Compensation Budget Line). Still note that xA is no longer an optimal bundle so the
new demand is xC .

This graph makes it apparent that a change in the price of x2 affects the demand
of x1 in a way that involves both the Hicksian Compensation and Slutsky. From the
result above we can write the fundamental Slutsky Equation.

Proposition 13 (The Slutsky Equation). 12 Suppose that u(.) is a continuous utility
function representing a L.N.S. and Strictly Convex ⪰ defined on X = RL

+. Then, for
all (p, w) and u = v(p, w) we have:

12Proposition 3.G.3, Mas-Colell, Whinston, and Green 1995, pp. 71–2)
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∂hl(p, u)

∂pk
=
∂xl(p, w)

∂pk
+
∂xl(p, w)

∂w
xk(p, w) (2.17)

Proof. Recall that: w ≡ e(p, v(p, w)) and h(p, u) ≡ x(p.e(p, u)). Differentiating with
respect to pk we have:

∂hl(p, u)

∂pk
=
∂xl(p, e(p, u)

∂pk
+
∂xl(p, e(p, u))

∂pk

∂e(p, u)

∂pk

Still, ∂xl(p,e(p,u))
∂pk

≡ ∂xl(p,w)
∂w

and, by Shephard’s Lemma, ∂e(p,u)
∂pk

≡ hk(p, u) and, finally
hk(p, u) ≡ xk(p, w).

Then we have the result:

∂hl(p, u)

∂pk
=
∂xl(p, w)

∂pk
+
∂xl(p, w)

∂w
xk(p, w)

The importance of the Slutsky Equation is that it decomposes the demand change
induced by a price change into two separate effects: the Substitution Effect and the
Income Effect.

∂hl(p, u)

∂pk︸ ︷︷ ︸
Substitution Effect

=
∂xl(p, w)

∂pk︸ ︷︷ ︸
Total Effect

+
∂xl(p, w)

∂w
xk(p, w)︸ ︷︷ ︸

Income Effect

Furthermore (17) can be arranged in a more economically meaningful way as follows:

∂xl(p, w)

∂pk︸ ︷︷ ︸
Total Effect

=
∂hl(p, u)

∂pk︸ ︷︷ ︸
Substitution Effect

− ∂xl(p, w)

∂w
xk(p, w)︸ ︷︷ ︸

Income Effect

The economic intuition behind the Slutsky Equation is that if the price of good k
increases, this has two effects on the demand for good l: the Substitution Effect, a
movement along the original indifference curve since the utility is fixed (i.e., Hicksian
Demand refers to an EMP). And an Income Effect, that is, the movement from one
indifference curve to another. A change in prices determines a change in income and
therefore in the size of the budget line, which represents the constraint of the UMP.

These effects are represented graphically in Figure 8. A consumer faces an initial
price-wealth situation (p, w) and therefore a budget set B(p, w).Then he chooses xA.
Let’s assume now a change in the price of x1, so then the new budget set is B(p′, w).
The new optimal consumption is xC . But this move from xA to xC can be decomposed
into two different parts. The Substitution Effect, which affects the Hicksian Demand.
Since, by definition, h(p, u) solves the EMP constrained to u(x), the new demand must
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Figure 2.8: Total Effect, Substitution Effect, and Income Effect

be on the same indifference curve. But since the lower price of x1 makes it possible to
reach a higher indifference curve, that is, the new demand is xC .

The importance of the Slutsky Equation is that it allows us to view comparative
statics in prices as the sum of an income effect and a substitution effect. However, in
order to fully assess this point, one has to look at these effects in a more general way,
that is, by rewriting equation (17) in matrix form. Indeed note that its right part is an
element of the so-called Slutsky Matrix.

Dph(p, u) =


∂h1(p,u)

∂p1
. . . ∂h1(p,u)

∂pL...
...

...
∂hL(p,u)

∂p1
. . . ∂hL(p,u)

∂pL

 =


∂x1(p,w)

∂p1
+ ∂x1(p,w)

∂w
x1(p, w) . . . ∂x1(p,w)

∂pL
+ ∂x1(p,w)

∂w
xL(p, w)

...
...

...
∂xL(p,w)

∂p1
+ ∂xL(p,w)

∂w
x1(p, w) . . . ∂xL(p,w)

∂pL
+ ∂xL(p,w)

∂w
xL(p, w)

 = S(p, w)

(2.18)

The advantage of this matrix form is that it shows the own-price substitution effects
as well as the cross-price substitution effects. Dph(p, u) is the matrix of price effects
for the Hicksian Demand, which is, roughly speaking, the equivalent of the Hicksian
Demand of the matrix of the Price Effects for the Marshallian Demand. However, there
are also important differences. Since we know that we can recover hi(p, u) simply by
differentiating the expenditure function e(p, u), this means that if we are at an opti-
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mum in the EMP, the changes in demand caused by price changes do not affect the
consumer’s expenditure.

Example 2.5.1. Let’s continue with a log Cobb-Douglas Utility function, u(x1, x2) =
α ln (x1) + (1− α) ln (x2). Recall that the Mashallian demand functions are:

x1 =
αw

p1

x2 =
(1− α)w

p2

and the Hicksian demand for good 1 is:

h1(p, u) = eu
( αp2
(1− α)p1

)1−α

Let’s see the impact of the change of price of good 1 on x1. We can compute:

∂xl(p, w)

∂pk
+
∂xl(p, w)

∂w
xk(p, w) =

−αw
p21︸ ︷︷ ︸

Total effect

+
α

p1
· αw
p1︸ ︷︷ ︸

Income effect

=

− aw + a1w

p21
= αw

(α− 1)

p21︸ ︷︷ ︸
Substitution effect

(2.19)

Let’s see the effect on the Hicksian demand of good 1. We can rewrite h1(p, u) as:

h1(p, u) = (αp2)
1−α · ((1− α)p1)

α−1

Then:
∂h1(p, u)

∂p1
=(α− 1)(αp2)

1−α((1− α)p1)
α−2(1− α) =

(α− 1)(αp2)
1−α(1− α)α−2+1

p2−α
1

=

(α− 1)
(αp2)

1−α(1− α)α−1

p2−α
1

=

(α− 1)
(αp2)

1−α

(1− α)1−αp2−α
1

Notice that p2−α
1 = p2 · p1−α

1 . Then:

∂h1(p, u)

∂p1
=

(α− 1)

p1

[ αp2
(1− α)p1

]1−α

eu
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Recall that:
eu = w

( α
p1

)α(1− α)

p2

)1−α

Therefore, plugging eu in the expression gives:

(1− α)

p1

[ αp2
(1− α)p1

]1−α

· w
( α
p1

)α(1− α)

p2

)1−α

Solving it gives:

(α− 1)

p1

[ αp2
(1− α)p1

]1−α

· w
( α
p1

)α(1− α)

p2

)1−α

=

α− 1

p1
· (αp2)

1−α

(1− α)1−αp1−α
1

· α
α

pα1
· (1− α)1−α

p1−α
2

· w =

(α− 1)

p1
· α1−α

p
1−α−(1−α)
2

· α
α

pα1
· (1− α)1−α−(1−α)w =

(α− 1) · α1−α · ααw

p
1+(1−α)+α
1

=

(α− 1)αw

p21

Which is the result previously obtained in (19).
Let’s see the effect of the change of the price of good 1 on x2. Recall that x∗2 is:

x2 =
(1− α)w

p1

Then ∂x2(p,w)
∂p1

= 0. The income effect is:

∂x2(p, w)

w
· x1(p, w) =

1− α

p2

αw

p1

The Slutsky equation is:
∂h2(p, w)

∂p1
= 0− 1− α

p2

αw

p1

In other words, since the optimal demand x∗i associated with a Cobb-Douglas utility
function depends only on the price pi, a raise of p−i does not have an effect on the
demand for good i. The substitution effect (i.e., the change in the Hicksian demand)
and the income effect for the Marshallian demand are equal.

The Slutsky Matrix associated to this utility function is:

S(p, w) =

[
αw(α−1)

p21
0− 1−α

p2
αw
p1

0− 1−α
p2

αw
p1

(1−α)w(1+(1−α))

p22

]
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The Slutsky matrix is important because it is directly computable from the Mar-
shallian demands that are (generally) observable since they are functions of observable
variables, prices, and wealth. Furthermore, if h(p, u) is continuously differentiable at
(p, u), we can state this important result concerning the properties of Dph(p, u).

Proposition 14. Suppose that u(.) is a continuous utility function representing L.N.S.
and strictly convex preferecnces relation ⪰ defined on X = RL

+. Suppose also that h(p, u)
is continuously differentiable at (p, u). Then:

1. Dph(p, u) = D2
pe(p, u)

2. Dph(p, u) is a Negative Semidefinite Matrix

3. Dph(p, u) is a symmetric matrix

4. Dph(p, u)p = 0

Proof. This is a scratch of the proof. 1) follows from Shephard’s Lemma by differentia-
tion. 2) This property, as well as 3, derives from the fact that since e(p, u) is continuous
and concave, its Hessian Matrix is symmetric (by the properties of the Hessian Matri-
ces) and Negative Semidefinite (since the function is concave). 4) This derives from
the fact that h(p, u) is Homogeneous of Degree Zero in p. Then h(αp, u) = h(p, u),
and therefore h(αp, u) − h(p, u) = 0. Taking the derivative with respect to α we have
∂h(αp,u)

∂α
p = 0.

The economic meaning of Negative Semidefiniteness of Dph(p, u) is that if the price
of i rises, then the change in hi(p, u) is not positive (i.e., ∂hi(p,u)

∂pi
≤ 0). This is a

differential form of the law of the demand.13 The symmetry of Dph(p, u) is a direct
consequence of its being a Hessian Matrix, but its economic meaning is somewhat
"fuzzy." Indeed, it means that the effect of a small increase in the price of good i on
the quantity demanded of good j is identical to the effect of a small change in the price
of j on the quantity demanded of i.

Example 2.5.2. Let’s take the Slutsky matrix from the Log Cobb-Douglas Utility:

S(p, w) =

[
αw(α−1)

p21
0− 1−α

p2
αw
p1

0− 1−α
p2

αw
p1

−(1−α)w(1−(1−α))

p22

]

It is apparent that this matrix is symmetric. To check for Negative semidefiniteness is
less trivial. One way (among the others) is to check for all principal minors, namely
each submatrix obtained eliminating (n−k) rows and (n−k) columns. Then, if at least
one minor on the main diagonal has a determinant equal to 0, and the other minors’

13Because in the Hessian Matrix in the main diagonal, we find all the second-order derivatives, and
in the Negative Semidefinite Matrix these elements are always non-positive
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determinants, (−1)k|S|k, are ≤ 0 if k is odd, and ≥ 0 if k is even, the matrix is negative
semi-definite. In this example:∣∣∣αw(α− 1

p21

∣∣∣, ∣∣∣0− 1− α

p2

αw

p1

∣∣∣ ≤ 0

and:

|S(p, w)| =−αw + α2w

p21
·
[−(1− α)w[1− (1− α)]

p22

]
−
((1− α)

p2

αw

p1

)2

=[
(αw)2 − 2(αw)(α2w) + α2w

]
−
[
(αw)2 − 2(αw)(α2w) + α2w

]
= 0

Then the matrix is negative semidefinite.

Example 2.5.3. An interesting case for comparative statics is that of Giffen goods
(Kreps 1990, p. 61). Recall that goods are classified with respect to wealth and price
effects. Then, good j:

• It is inferior if its wealth-derivative is less than zero: ∂xj

∂w
< 0

• It is normal if its wealth-derivative is greater and equal than zero: ∂xj

∂w
≥ 0.

• It is ordinary if its price-derivative is less than zero: ∂xj

∂pj
< 0.

• It is Giffen if its price-derivative is greater than zero: ∂xj

∂pj
> 0.

Let’s consider the case of a Giffen good. Since good is Giffen with respect to its
own price change, we have to look for those values across the main diagonal in all the
matrices involved. So, in Slutsky Equation’s terms:

∂xj(p, w)

∂pj
=
∂hj(p, u)

∂pj
− ∂xj
∂w

· xj(p, w)

∂xj

∂pj
must be greater than zero. But we know that ∂hj

∂pj
is non-positive since it is an

element of the main diagonal of a Hessian Negative Semi-Definite Matrix. Therefore,
the only possibility for j’s own price-derivative of being > 0 is that j is also inferior,
i.e., that ∂xj

∂w
< 0. But this is not sufficient. j must be sufficiently inferior so that its

income effect overcomes the substitution effect. This could be the case if j occupies a
great share in the consumer’s consumption bundle.

However, notice that although a theoretical possibility, there is neither historical nor
empirical evidence of the existence of such Giffen goods.

From the Slutsky matrix, it is easy to identify different cross-price effects. Indeed it
is sufficient to look at the sign of cross-derivatives. Then two goods, l, k are substitutes
at (p, u) if ∂hl

∂pk
≥ 0; and complementary if ∂hl

∂pk
≤ 0. Finally, sinceDph(p, u) is Negative
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Quantity of good 1

p1
x1(p, w)

h1(p, u)
p01

x1(p, w) = h1(p, u)

Figure 2.9: The Marshallian and the Hicksian Demand for a Normal Good

Definite, and therefore ∂hi

∂pi
≤ 0, property 4 of Proposition 10 ensures that there must

be a good k for which ∂hl(u,p)
∂pk

≥ 0, i.e. every good has at least one substitute.
There is another interpretation of the Slutsky Equation. Indeed it describes the

relationship between the slope of the Hicksian demand curve and the Marshallian de-
mand curve at prices p. This relationship is represented in Figure 9, for the case of
a Normal Good. This represents the demand curve for the good 1, holding all other
prices fixed. Note that the two demands are equal when p1 is p01. Furthermore, in the
figure, Marshallian demand and Hicksian demand refer to the same utility level, i.e.,
h1(p, v(p, w)) = x1(p, w)). From the figure, it is apparent that the slope of the Wal-
rasian demand curve is less negative than the slope of the Hicksian demand for that
price. That is the Hicksian demand curve is less responsive to price changes than is
the Marshallian demand curve. At level p01 there is no income compensation. When
p > p01, income compensation is positive because the individual needs help to remain
at the same utility level. Finally, at p < p10, the income compensation is negative to
prevent an increase in utility from a lower price.

To understand this, let’s see the Slutsky equation again. Recall that the own-price
derivative is negative by definition for the Hicksian demand. In order for the Marshallian
demand to have a lesser slope than the Hicksian, the income effect must be positive.
Therefore, a good 1 must be normal. In the case of inferior goods, the relationship is
reversed: the Hicksian demand is less negatively steeper than the Marshallian demand.

2.6 Welfare Evaluation of price changes

Economists want to measure how consumers are affected by changes in prices and
wealth. So far we have seen how consumers react to these changes. The issue is now to
provide a way of measuring it. The simplest way of addressing this problem is by the
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notion of Consumer Surplus (see below). However, this measure is mainly imprecise,
and only in specific circumstances (addressed below) can it be considered exact.

The first problem to deal with is that we cannot really measure how utility changes
as an effect of some policy. To simplify, we consider a consumer with rational, contin-
uous, and Locally Non-Satiated ⪰, and furthermore, that both e(p, u) and v(p, w) are
differentiable. Besides, the only focus will be on a price change so that the wealth is
fixed, and it is evaluated the impact of a welfare change from p0 to p1.

Let’s take (p0, w) and (p1, w), that is the pair representing the original prices and
wealth and the pair representing new prices and the same wealth. A simple way of
seeing it is to compute the variation in the consumer’s indirect utility:

v(p1, w)− v(p0, w)

Above there is, intuitively, the welfare change. If the difference between utility at new
prices and old wealth and old prices and old wealth is positive, then we could presume
the consumer has benefitted from this change.

However, we don’t know what utility is, and the way we constructed utility functions
aimed only to make ordinal utility representable. A possible getaway from this point
is that of linking utility to money, using what is usually referred to as Money Metric
Indirect Utility, which is constructed starting from the e(p, u), and has the same
properties (see Proposition above).

Thus, choosing a price vector p̄ >> 0, and an indirect utility function v(p, w), we
can write the following:

e(p̄, v(p, w))

Therefore, we can write the utility difference as follows:

e(p̄, v(p1, w))− e(p̄, v(p0, w))

This function gives how much money is needed, at prices p̄ to reach utility v(p, w). In
other words, this function measures how much income the consumer would need, at
prices p̄ to be as well off as she would be facing prices p and income w.

Assume that we are facing a change of prices from p0 to p1 (so that p̄ can be either
the new prices or the old ones). Then, the question is: what is the impact on a given
consumer, with an income w, of the change of p0 to p1?

Two measures of compensation can be employed. These are the Compensating
Variation and the Equivalent Variation. We can define both of them in terms of
e(p, u) and v(p, w). Recall that v(p, w) ≡ u.

So then, we can write CV as follows:

CV (p0, p1, w) = e(p0, u0)− e(p1, u0) = w − e(p1, u0) (2.20)

Since e(p0, u0) = e(p1, u1) = w (and v(p1, w) = u1 and v(p2, w), if the prices change
from p0 to p1, CV tells how much we will have to compensate, or charge, the consumer
to stay on the same indifference curve. It uses the new prices as the base.
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Figure 2.10: The Equivalent Variation and the Compensating Variation

Equivalently, EV can be written as:

EV (p0, p1, w) = e(p0, u1)− e(p0, u0) = e(p0, u1)− w (2.21)

That is, the change in expenditure that would be required at the original prices to
have the same effect on consumers that price change had. In other words, it uses the
current prices as the base and asks what income change at the current prices would
be equivalent to the proposed change in terms of its impact on utility. An equivalent
definition, (Kreps 2013, p. 296) is the following:

Definition 2.6.1. The Equivalent Variation (EV) is the amount of money that must
be added to w so that the consumer is indifferent between having w at prices p1 and
having w + EV at prices p0.

The Compensating Variation (CV) is the amount of money that must be subtracted
from w so that the consumer is indifferent between having w at prices p0 and having
w − CV at prices p1.

These variations are depicted in Figure 10. Each indifferent curve is associated
with a level of utility. Therefore, each budget set represents those combinations (p, w)
through which the consumer obtains utility u and u1. Assume that the price of x1 de-
creases from p0 to p1. Now the consumer can reach a new indifference curve, therefore
he can obtain higher utility. EV represents how much the consumer must be compen-
sated in order to be as well off as when facing p1. CV instead represents how much
money should be taken away from the consumer in order to make her stay as well off
as when facing p0.

Recall that the classic tool for measuring welfare changes is Consumer’s surplus:

CS =

∫ p1

p0
x(t)dt
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Figure 2.11: The Equivalent Variation and the Compensating Variation for a Normal
Good

Assuming a demand function x(p), the Consumer’s surplus associated with a price
movement from p0 to p1 is the area to the left of the demand curve between p0 and
p1. However, with one exception (if preferences are quasi-linear), usually, CS is not a
precise measure of welfare changes because EV ̸= CV .

The EV and CV can be represented in terms of the Hicksian Demand Curve.
Assuming that only the price of good 1 changes from p0 to p1, and w = w1 = w0,
we can write:

EV (p0, p1, w) =

∫ p11

p01

hy(p1, p̄−1, u
1)dp1 (2.22)

Where p̄−1 = (p2, . . . , pL). Thus the change in Consumer Welfare measured by the
equivalent variation is represented by the area between p0, p1 and the left of the Hicksian
Demand for good 1 associated with utility level u1, that is the green and yellow area in
Figure 11.

Similarly, the Compensating Variation can be written as:

CV (p0, p1, w) =

∫ p11

p01

hy(p1, p̄−1, u
0)dp1 (2.23)

This is the area between p0, p1 and the Hicksian Demand for good 1 at utility u0,
which is the green area in Figure 11.

In other words, we can say that the Compensating Variation is the integral of the
Hicksian Demand curve associated with the initial level of utility, and the Equivalent
Variation is the integral of the Hicksian demand curve associated with the final level of
utility.

Assuming, as done in Figure 11, that good 1 is normal, EV > CV . This relation
reverses in the case of good 1 being inferior.
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Furthermore, if preferences are quasi-linear (i.e., there is no wealth effect for good
1), CV = EV . In this last case (and only in this one), CV = EV corresponds to the
Consumer Surplus. In all other cases, this can be seen as no more than an approximation
between Compensating Variation and Equivalent Variation.
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Chapter 3

General Equilibrium in a Pure
Exchange Economy

3.1 Introduction

The idea of general economic equilibrium dates back to the origins of political economy,
to the idea that different individuals, in pursuing their own self-interest, would benefit
the society as a whole. This idea is embodied in the famous example of the Scottish
philosopher and one of the founders of Political Economy, Adam Smith, namely the
notorious "invisible hand."(Smith 1776) Put in a modern fashion, the problem is how a
vast number of individuals aggregate in such a way that efficient allocation of resources
and productive efforts arise without, apparently, any authority coordinating their deci-
sions. Then, it emerged the idea that prices played a role in that process since all the
individuals face the same price and have different responses towards them: for some,
the price is too high, for some too low, some they can afford, some cannot, and so on.

The idea of the working of prices in a single market, and therefore of equilibrium
in it, has been treated and partially formalized in the second half of the XIXth century,
giving rise to the popular idea of (partial) equilibrium as the intersection between supply
and demand. (Marshall 1920) This idea, however, refers to a single market. In the same
period, several attempts were made to extend this framework to study the working and
interplay of all the markets in an economy since, intuitively, what happens in the
market for, say, cars, is influenced by what happens in the market for fuel, labor, houses,
and so on...

The first work to address these issues was due to Leon Walras (Walras 2014), and
despite his way of addressing it largely lacked mathematical rigor, since then, the prob-
lem is defined as Walrasian Equilibrium (other than competitive equilibrium. In
these notes the terms will be interchangeable).

The idea of General Economic Equilibrium raised two different questions: first if this
equilibrium was possible (e.g., if it existed); second, how it was characterized, namely
what are its properties in terms of efficiency, especially when compared to allegedly
alternative systems, like planned economies.
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For a relatively long period, after Walras’ first address to this issue, the idea of
existence was deemed "trivial", and the focus was on the efficiency properties of the
economic equilibrium.1 However, rigorous attempts to establish the mathematical foun-
dations of Economics showed that this was not true (Wald 1951; Neumann 1945), and
a rigorous proof of the existence of General Economic Equilibrium was reached only
in 1954, after some important results concerning its properties, the so-called Welfare
Theorems have already been proved. (Arrow and Debreu 1954; McKenzie 1954)

Therefore, in the following notes, I will start by providing a series of definitions
characterizing both the very abstract set-up that we are using, that of pure-exchange
economy, and the Walrasian Equilibrium. Later, I will discuss the Welfare theo-
rem and finally the main result concerning General Economic Equilibrium, namely the
mathematical proof of its existence.

3.2 Pure Exchange Economy: the Walrasian Model

The pure-exchange economy is the simplest and most abstract setting that we can use
to fully characterize an economic system where there are a finite (but potentially a very
large) number of agents, each with endowments and preferences that can be represented
by utility functions. The main idea is that we can solve a general equilibrium problem
using the Walrasian equilibrium (or Competitive equilibrium), a solution concept
that, in a nutshell, requires that all agents be price-takers and utility maximizers. Hav-
ing characterized an economy in terms of equilibria, we can infer some ideas concerning
its optimal properties.

3.2.1 The primitives of the model

Let’s consider an economy with I agents i ∈ I = 1, . . . , I, and commodities l =
1, . . . , L ∈ L. We define a bundle of commodities as a vector x ∈ RL

+. Each agent has
an endowment ei ∈ RL

+, and an utility function u : Rm
+ → R. Therefore, an economy

can be fully characterized as:
E = (ui, e

i)i∈I

Agents are price-takers, and p ∈ RL
+ are non-negative. Each agent is utility maximize;

namely, she solves the following problem:

max
x∈RL

+

ui(x)

s.t.
1In a nutshell, Walras’ idea was that of building a model where the number of equations was equal

to the number of variables. This would have automatically provided the existence of a solution. Of
course, this is not true so since the 1920s, some attempts to introduce further restrictions, like the
impossibilities of negative prices, were attempted, for instance by Gustav Cassel (Cassell 1932). But
these were still not sufficient.
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p · x ≤ p · ei

Where p · ei represents her endowment at current prices. Therefore, the budget set is:

Bi(p, ei) =
{
x : p · x ≤ p · ei

}
In the analysis of demand theory, we have established several results linking pref-

erences to utility functions and the solution to a Utility Maximization Problem (or an
Expenditure Minimization) to the existence of a demand function (or correspondence).
In that setup, there was only one consumer facing different prices or price changes.
In general equilibrium, there are potentially many consumers, still the analysis does
not change too much. Each consumer has a utility function and solves a constrained
optimization problem. However, for the sake of simplicity, some assumptions are made
regarding the shape and properties of utility functions, as well as the endowments.

Definition 3.2.1. The following are the main assumptions about consumer preferences
and endowments:

A.1 For all agents i ∈ I, ui(x) is continuous

A.2 For all agents i ∈ I, ui(x) is increasing, namely ui(x) > ui(x′) if x≫ x′

A.3 For all agents i ∈ I, ui(x) is concave

A.4 For all agents i ∈ I, ei ≫ 0

The last assumption says that every agent has at least a very small amount of
endowments, namely there is no agent in the economy whose ei = (0, . . . , 0). A further
implicit assumption is the lack of externality, namely the utility of each agent is affected
only by her consumption, and not others.

Notice that A1 and A4 are technical assumptions in order to make things simpler.
A2 − A3 can be weakened, as we will see later. In particular, A2 makes it possible to
use Walras’ Law, and A3 to make aggregate demand-correspondence convex-valued.

3.2.2 The Walrasian Equilibrium

A Walrasian equilibrium for an economy is a vector of prices and quantities (con-
sumption bundles) (p∗, x∗) such that each agent maximizes her utility function, and
each market clears. In particular, the last assumption means that, for each good, the
total demand among all agents is equal to the total supply. Thus, we have the following
formal definition.

Definition 3.2.2. A Walrasian equilibrium for the economy E = (ui, e
i)i∈I is a vector

{p, {xi}i∈I}, such that:

• each agent i maximizes her utility given p:

xi ∈ argmax
x∈Bi

ui(x)
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• each good’s market l ∈ L clears: ∑
i∈I

xil =
∑
i∈I

eil

Notice that in this very simple and very abstract setting, each agent is a price-
taker, so the impact of her choice on prices and other agents’ demands is risible. Prices
form instantaneously as the effect of the matching between supply and demand in each
market. To represent the idea of price formation, Walras introduces the fictitious figure
of the auctioneer and the process of tatonnement, namely at the beginning of each time
period, prices were formed as the outcome of some auction process, and therefore taken
as given by other agents. In the most abstract analysis of General Equilibrium, we can
avoid model price formation. However, an important feature concerning equilibrium
prices must be noted.

Corollary 3.2.0.1. If (p∗, x∗) is a Walrasian equilibrium, then (λp∗, x∗) with λ > 0, is
an equilibrium too.

This corollary is important because it allows for price normalization, and this will
be helpful in the proof of existence. The most common normalizations are λ = 1

pi
such

that the equilibrium price system becomes p∗ = (1, p2, . . . , pL); and λ = 1
||p|| , so that we

can write p∗ as belonging to the simplex formed by L− 1 prices, namely ∆L−1.

Example 3.2.1. Let’s see a simple example. There are two people, Ann and David,
and two goods, chips and beer each with some endowment and with some preferences
over it. To make things simpler, they have the same utility functions and differ only in
endowments. Then, Ann’s utility is given by the following familiar Cobb-Douglas Utility
function:

uA(x
A
B, x

A
C) = α ln (xAC) + (1− α) ln (xAB)

And David’s preferences are represented by:

uD(x
D
B , x

D
C ) = β ln (xDC ) + (1− β) ln (xDB)

Where α, β ∈ (0, 1). Ann’s endowment is eA(1, 2) (one can of beer and two packs of
chips), and David’s is eD = (2, 1). Each agent’s problem is the following:

max
xB ,xC∈R2

+

α lnxC + (1− α) lnxB

s.t

pBxB + pCxC ≤ pB(1) + pC(2)

Therefore Ann’s demand (recall that is Cobb-Douglas utility function) is:

xAB =
α(pB + 2pC)

pB
and xAC =

(1− α)(pB + 2pC)

pC
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Similarly, for David:

xDB =
β(2pB + pC)

pB
and xDC =

(1− β)(2pB + pC)

pC

In equilibrium markets clear for each good. So for beer, we have:

xAB + xDC = eAB + eDB

that is:
α(pB + 2pC)

pB

β(2pB + pC)

pB
= 3

So the equilibrium price is the ratio:

p∗C
p∗B

=
3− α− 2β

2α + β

Notice that one market clearing condition solves the price for the second market. Solving
for the prices and plugging in the demand functions, we have the equilibrium allocations.

3.2.3 A graphical example for a 2-goods and 2-agents economy:
the Edgeworth Box

A useful way to graphically study General Equilibrium, but only for the case of 2 goods
and 2 agents is using the so-called Edgeworth boxes.

These are represented in Figure 1. There are two agents A and B, and each has
an endowment eA = (eAx , e

A
y ) and eB = (eBx , e

B
y ) (represented by q). Any point in the

box represents nonwasteful allocations of x, y for the two agents. The line passing by
q is the equilibrium price and the budget line for the two agents. This line divides
the box into two different budget sets for each agent. As seen in consumer theory, the
Marshallian demand is the point of tangency between the indifference curve and the
budget line for the two agents. Therefore the point where the two demands match is
the efficient allocation of this economy.

Edgeworth boxes can be used to describe several economies. See for example the
following situation, where there is a unique equilibrium. Suppose two agents have the
following utility functions: uA = x1 and uB = x2, and the following endowments,
eA = (0, 1) and eB = (1, 0). Namely, agent 1 receives utility only from the consumption
of x2 but has only a unit of x1. The reverse for agent 2. This situation can be represented
in Figure 2a.

The initial endowment is e. However, A increases her utility by pushing her indif-
ference curve toward the right. B increases her utility by pushing her indifference curve
toward the top (notice that for B the plot is mirrored). This process of "adjustment"
will stop with the feasible set, namely at the competitive equilibrium in the figure. In
this equilibrium, pA = pB.
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B

good y
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eAy
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eBy

Initial
Endowment

Efficient
Allocation

Figure 3.1: Equilibrium in an Edgeworth Box

Suppose now that prices are not equal, so that pA > pB, or pA < pB. We have the
situation in Figure 2b. Point B is not an equilibrium because agent B wants to push
down her indifference curve as maximum as possible, and the allocation in A does not
clear the market. The same for point A. Therefore, in this economy, there is only one
equilibrium, namely where prices are equal.

3.3 Normative Analysis: the Welfare Theorems

Since the beginning of political economy as an autonomous discipline, one of the most
widely argued topics regarded the alleged efficiency, or not, of the markets as the best
way to allocate resources among individuals. Only in the late XIXth and XXth century
a formal argument was provided to discuss market efficiency, namely that of Pareto
Efficiency (named after Vilfredo Pareto). On the notion of Pareto Efficiency, properly
formalized in the 1950s, two important results have been established and proved, the
First and the Second Theorem of Welfare. Roughly speaking, they link Competitive
Equilibrium and Pareto Optimality, albeit in different ways. Indeed, the first welfare
theorem states that equilibrium outcomes are efficient. The second welfare theorem
states that efficient outcomes are competitive equilibria, given the correct prices and
endowments.

Definition 3.3.1. An allocation (xi)i∈I ∈ RI×L
+ is feasible if

∑
i∈I x

i
l ≤

∑
i∈I e

i
l, for

all I ∈ L.
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A

B

(b) Price disequilibrium

Figure 3.2: Two different situations

Definition 3.3.2. Given an economy E , a feasible allocation x is Pareto Optimal if
there is not other feasible allocation x̂ such that, for all i ∈ I ui(x̂i) ≥ ui(xi), and for
at least one i ui(x̂i) > ui(xi).

These can be represented graphically through an Edgeworth Box.
In Figure 3a it is shown a not Pareto Optimal Allocation. Indeed for agent A, the

point of intersection with the other agent’s indifference curve is not optimal since she
can easily move toward a higher indifference curve. In figure 3b it is shown a Pareto
Optimal Allocation, where the two indifference curves meet.

In general, we can represent the set of all Pareto Allocations in the Edgeworth Box
as the line intersecting all the Pareto Optimal allocations, called contract curve.

Notice that Pareto Optimality does not say anything about "fairness." Indeed, a
Pareto Optimal allocation can be one where one agent has all, or almost all, the endow-
ments, and the other agents have zero or close to zero. Then, according to the definition
of Pareto Optimality, an attempt to redistribute wealth should not be optimal.

3.3.1 The First Theorem of Welfare

The first result that links Pareto Optimality and Competitive Equilibrium is the first
Welfare Theorem.

Theorem 3.3.1 (First Welfare Theorem). Suppose an economy that satisfies assump-
tion A2. An equilibrium allocation x ∈ RI×L

+ associated with equilibrium price p ∈ RL
+

is Pareto Efficient.

Proof. Suppose that a competitive equilibrium allocation is not Pareto Efficient. Then,
it exists x̂ such that, for all i, ui(x̂i) ≥ ui(xi) and the inequality is strict for some agents.
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(b) A Pareto Optimal Allocation

Figure 3.3: Pareto Optimality

By revealed preferences, we can write:

p · x̂i ≥ p · xi

For all i, and
p · x̂j > p · xj

for j. Summing inequalities across the agents yields:∑
i∈I

p · x̂i >
∑
i∈I

p · xi =
∑
i∈I

p · ei

This because x is an equilibrium allocation, so
∑

i∈I p ·xi =
∑

i∈I e
i. Rearranging these

inequalities, we have:∑
i∈I

p · x̂il =
∑
i∈I

∑
i∈L

pl · x̂il =
∑
i∈L

pl
∑
i∈I

x̂il >
∑
i∈L

pl
∑
i∈I

eil

and therefore: ∑
i∈L

pl
[∑

i∈I

(x̂il − eil)
]
> 0

Since p≥ 0, there must be at least one l such that:∑
i∈I

x̂il >
∑
i∈I

eil

But then, the society’s consumption is greater than the society’s endowment. Therefore,
we have a contradiction.
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Figure 3.4: The Contract Curve

A way of generalizing the first welfare theorem is through a concept derived from
cooperative game theory, namely that of Core. The simple idea is that any subset
of agents cannot do better alone than a competitive allocation. To see this argument
formally, we first need to define the idea of coalitions and blocking coalitions.

Definition 3.3.3. Let a set of agents ⊂ I denote a coalition of consumers. Then, S
blocks allocation (xi)i∈I if there is an allocation y such that:

1.
∑

i∈S y
i =

∑
i∈S e

i

2. ui(yi) ≥ ui(xi) for all i ∈ S, with at least one strict preference.

Therefore S is called a blocking coalition of allocation (xi)i∈I .

The intuition is that if a coalition, i.e., a subset of agents, can do better by simply
"walking away" and allocating their endowment according to yi instead of xi, then xi

cannot be an equilibrium, and therefore, it is not Pareto Optimal.
To see the formal statement and proof, a further definition is required, that of Core.

Definition 3.3.4. The core of an exchange economy is the set of all unblocked allo-
cations.

Therefore, we have the following result.

Theorem 3.3.2. Fix an economy E, a Walrasian equilibrium allocation is a core allo-
cation, i.e., it is not blocked by any coalition S ⊆ I.

Proof. Suppose that x∗ is a competitive equilibrium allocation, and it is blocked by
some coalition S ⊆ I. Then, there exists an allocation yi such that:
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1.
∑

i∈S y
i =

∑
i∈S e

i

2. ui(yi) ≥ ui(xi) for all i ∈ S, with at least one strict preference.

By revealed preferences:
p · yi ≥ p · x∗

for all i ∈ S, and:
p · yi > p · x∗

for at least one i. Summing up these inequalities, we have:∑
i∈S

p · x̂i >
∑
i∈S

p · x∗ = p
∑
i∈S

x∗

And: ∑
i∈S

p · yi >
∑
i∈S

p · ei

This implies that: ∑
i∈S

ei >
∑
i∈S

x∗

so that:
p ·

∑
i∈S

(ei − x∗) > 0

Since p > 0, this means that for some agents j p·xj < p·ej, so that xj cannot be optimal,
and therefore not a competitive equilibrium. We have reached a contradiction.

3.3.2 The Second Theorem of Welfare

So far, it seems that this result establishes the superiority of a free-market, "invisible-
hand" market process over any attempt to politically enforce social justice through
redistribution. However, although strong, this result is not unique and cannot be gen-
eralized too much. Indeed, a second general result says that, under some conditions,
any Pareto efficient allocation can be achieved as a competitive equilibrium after some
adjustment in agents’ endowments. This result is the Second Theorem of Welfare,
which can be interpreted as the "converse" of the first theorem.

Theorem 3.3.3. Given an economy that satisfies assumptions A1− A4, if an endow-
ment allocation e is Pareto optimal, then there exists a price vector p ∈ RL

+ such that
this is the Competitive equilibrium of the economy.

Proof. The main idea of the proof can be represented graphically in the following figure:
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Figure 3.5: A competitive equilibrium

That is, given a competitive equilibrium (where the agents’ indifference curves in-
tersect), we can find a price hyperplane passing through it (in this case, where L = 2,
the hyperplane is a line).2

Given its importance, we divide this theorem into four main steps.

1. For each consumer i, we define her upper contour set at her endowment ei, that
is:

Ai =
{
x ∈ RL

+ : ui(xi) > ui(ei)
}

Since u(·) is assumed to be concave, then Ai is a convex set. Furthermore, we
can define the "upper contour set of the entire economy" as the Minkowski sum
of Ai3 as:

A =
∑
i∈I

Ai =
{
x ∈ RL : it exists xi ∈ Ai, for each i with x =

∑
i∈I

xi
}

which is also a convex set.
2To do so, we use a powerful mathematical theorem called the Supporting Hyperplane Theo-

rem. This states that:

Theorem 3.3.4. Suppose A ⊂ Rn is convex and x /∈ Int(A)C , then there exists a vector p ∈ RL such
that p · x ≥ p · y for every y ∈ A.

3Given two sets, their Minkowski sum is their element-wise sum. For example:

A = {(0, 0), (1, 0)} B = {(0, 1), (2, 2)}

Then:
A+B = {(0, 1), (2, 2), (1, 1), (3, 2)}
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2. The total endowment of the economy belongs to the boundary of Ai. By definition
of A,

∑
i e

i ∈ A. Further, suppose that
∑

i e
i ∈ Int(A). Since Int(A) is open, it

exists an ϵ−neighbrorhood Nϵ(
∑
ei) ⊆ Int(A). Then, there exists an allocation

x ∈ RL×I
+ and λ < 1 such that

∑
i x

i = λ
∑

i e
i ∈ A. That is:

ui(x) ≥ ui(ei), ∀i = 1, . . . , l

But then 1
λ
x is feasible, since

∑
xi = λ

∑
ei and 1

λ

∑
xi =

∑
ei. By monotonicity:

ui(
xi

λi
) > ui(xi)

so we have defined a feasible allocation that beats e, which has been assumed to
be Pareto optimal. So, we have reached a contradiction.

3. We have a point on the boundary of a convex set. By the Supporting Hyperplane
Theorem, there exists a price vector p ̸= 0 such that:

p · y ≥ p ·
∑
i

ei

for any y ∈ A. However, we need to show that p > 0. Suppose that pl < 0,
for some good l. We can construct an allocation xk such that xik = eik for k ̸= i
and every i, and xil > eil. By monotonicity, xi ∈ Ai, so that

∑
i x

i ∈ A, but
p ·

∑
i x

i ≤ p ·
∑

i e
i. But this contradicts the Supporting Hyperplane theorem

above.

4. Now, we want to show that (p, e) is an equilibrium. We need to show that:

ei ∈ argmax
x∈Bi(p)

ui(x)

Suppose that for consumer i, there is an xi such that ui(xi) > ui(ei). We want
to show that xi is not feasible, namely that p · xi > p · ei. If ui(xi) > ui(ei),
by continuity, there exists a λ ∈ (0, 1) such that ui(λxi) > ui(ei) for λ < 1 but
close enough to 1. Hence λxi +

∑
j ̸=i e

j ∈ A, and therefore, by the Supporting
Hyperplane Theorem, we can write:

p · λxi ≥ p · ei

Dividing both sides by λ, yields:

p · xi ≥
1

λ
p · ei > p · ei︸ ︷︷ ︸

since p > 0 and e ≫ 0

Then, xi is not feasible.
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This completes the proof.

The two welfare theorems are extremely important results in discussing the norma-
tive properties of economies, as well as in assessing different policies. However, they are
results extremely general and do not take into account many features of real economies.
For instance, both theorems rule out externalities, assume symmetric information, and
complete markets. Finally, in the Second Welfare Theorem, nothing is said about how
the prospective social decision-maker can know what the preferences of agents are.

3.4 The Existence Theorem

The fundamental step in the analysis of general equilibrium is to show that, given the
mathematical properties we have used so far to characterize a pure-exchange economy,
Pareto optimal allocations, and competitive equilibrium, the latter actually exists. As
seen, for many decades after Walras’ work, this was considered less important with
respect to comparative statics and normative analysis. However, things changed in the
1940s and 1950s, and successful attempts to provide formal proof of existence were pub-
lished in 1954 (Arrow and Debreu 1954; McKenzie 1954). These results followed, with
slight modifications, a technique previously used by John Nash to show the existence
of the equilibrium solution named after him. In particular, they rested on a fixed-point
argument. In this section, given its importance, this result will be proved carefully,
following the result by Arrow & Debreu. First, a less general theorem with stronger
assumptions. Then, the general result.

Theorem 3.4.1 (Arrow-Debreu Existence Theorem (1954)). Let E be an economy
satisfying the following assumptions:

A.1 For all agents i ∈ I, ui(x) is continuous

A.2 For all agents i ∈ I, ui(x) is increasing, namely ui(x) > ui(x′) if x≫ x′

A.3 For all agents i ∈ I, ui(x) is concave

A.4 For all agents i ∈ I, ei ≫ 0

Then, a Competitive Equilibrium exists.

Notice how powerful this result is. Indeed, it says that a competitive equilibrium
always exists, given conditions A1− A4, which are very general. In particular, it does
not depend on any specific functional form of utility functions, assuming that this is
continuous, increasing, and concave.
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3.4.1 Existence under strong assumptions

Before entering into the classical proof, it can be useful to assume some stronger as-
sumptions. Then, we can replace A2− A3 with the following:

(A.2’) Strict monotonicity: Du′(x) ≫ 0,∀x

(A.3’) Strict concavity of u(·)

This relaxation has two implications. First, prices equal to zero are ruled out for
any l = 1, 2, . . . , L. Further, from A3′, the demand correspondence is a function.

Therefore, the existence theorem can be rewritten as follows:

Theorem 3.4.2. Let E be an economy satisfying assumption A1 − A2′ − A3′ − A4.
Then a Competitive Equilibrium exists.

Then, we can introduce a further notion, that of excess demand function.

The excess demand function

Definition 3.4.1. The excess demand function of agent i is:

zi(p) = xi(p, p · ei)− ei

where xi(·) is the Marshallian demand. The aggregate excess demand is:

z(p) =
∑
i∈I

zi(p)

Where z : RL
+ → RL

From this definition, it is clear that if there is a price such that z(p) = 0, then this
price is an equilibrium price. Indeed, into the notion of excess demand function enters
each agent’s Marshallian demand, which is the solution to the Utility Maximization
Problem, and further, since z(p) = 0, all markets clear. Therefore, proving the existence
of a Competitive equilibrium boils down to showing the existence of a solution to
z(p) = 0. Since z(p) is the main object we are working with from now on, some of its
properties must be established.

Proposition 15. z(p) has the following properties:

1. z(p) is continuous

2. z(p) is homogenous of degree zero

3. p · z(p) = 0 for all p

4. There is an s > 0 such that zl(p) > −s for every l and every p
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5. If pn → p, where p ̸= 0 and pl = 0 for some l, then max{z1(pn), . . . , zL(pn)} → ∞.

Proof. 1. This property simply derives from the fact that xi(p, p·ei), the Marshallian
Demand, is continuous in p. And the sum of a continuous function is a continuous
function too

2. Again, this derives from the Marshallian Demand. Indeed, if all the prices change
by a factor λ, then the Marshallian Demand does not change (i.e., it is Homoge-
neous of Degree Zero). This property, as well as the one above, is preserved under
summation (whereas

∑
i e

i does not count since it is a constant)

3. Notice that:
p1z1(p) + p2z2(p) + . . . pnzn(p) =

p ·
[∑

i

xi(p, p · ei)−
∑
i

ei
]
=∑

i

[p · x(p, p · ei)− p · ei] = 0

Indeed, by Walras’ Law p · x = p · ei, therefore, all above equals to zero. It is
interesting to notice a point. If we have n-goods, it is sufficient to clear the market
for n− 1-goods, then, also the market for the nth-good clear.

4. Since xi ∈ RL
+, then zi(p) ≥ −ei. This is because the lowest value the Marshallian

Demand can take is 0 (x ∈ R2
+). So in the case of all demands equal to 0, z(p) is

given just by the total initial endowment.

5. This comes from the strictly increasing utility of each good. As some, but not
all, prices go to zero, there must be some consumers whose wealth is not going
to zero. Because she has strongly monotone preferences, she must demand more
and more of one of the goods whose price is going to zero.4

The intuition when L = 2

Let’s see now the proof of the existence under strong assumptions. First, recall that,
from Walras’s Law, p · z(p) = 0, but z(p) = 0 holds only in equilibrium. This is what
we need to prove. By Walras’ law, if L − 1 markets clear, then also the Lth market
clears.

Let’s start with L = 2. Since z(p). Since z(p) is homogeneous of degree zero, we can
normalize p2 = 1 so that the price vector is p = (p1, 1). In equilibrium z1(p) = z2(p) = 0,
but by Walras’ Law, we only need to show that z1(p1, 1) = 0. Further, we know that
z1(p1, 1) is continuous on a connected domain. We want to show that:

4is a requirement needed to keep track of the possibility of Giffen Goods (recall that the Marshallian
Demand does not necessarily satisfy the Law of Demand).
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Figure 3.6: f : [0, 1] → [0, 1]

1. when p1 is small enough z1 > 0: that is, the preferences are strongly monotone

2. when p1 is big enough z1 ∈ [−Z, 0]: that is ei > 0.

Therefore, we can apply the intermediate value theorem, so that there must
exist at least on p∗1 such that z1(p∗1, 1) = 0. Thus, p∗1 is a competitive equilibrium.

For (1), assume p1 → 0, so that the price of good 1 is very cheap. Then z1(p1, 1) or
z2(p1, 1) go to infinity. Suppose z2(p1, 1) → ∞. Then p2·z2(p1, 1) = z2(p1, 1) → ∞. And
we know that p1·z1(p1, 1) > −p1s, for some fixed s. Hence, Walras’ Law, p1·z1+p2·z2 = 0
would be violated for some sufficiently small p1. So z1(p1, 1) → ∞.

For 2 assume that p1 → ∞. By homogeneity of degree zero, we can write p′2 =
1
p1

→
0, and normalize the price of p1 = 1. Again, since z1 + p′2 · z2 = 0, this implies z2 → ∞
and z1 → 0.

The proof under strong assumptions

When L > 2, we cannot use the intermediate value theorem, but we need a more
general result. This is the Brouwer Fixed Point Theorem.

Theorem 3.4.3 (Brouwer Fixed Point Theorem). Given a compact and convex set
A ⊂ Rn and a continuous function f : A → A, then there exists a fixed point x ∈ A
such that f(x) = x

Proof. Assume the special case when A = [0, 1]. Figure 6 shows very simply that it is
impossible to have a continuous function from the closed interval [0, 1] into itself that
does not cross at least once the 45 degree line, i.e. the line of points where f(x) = x.

This renders a simple image of the theorem. Let’s enter more in some (simple)
details. Let’s define:

g(x) = f(x)− x

Therefore, we can write:

g(0) = f(0)− 0 ≥ 0
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and

g(1) = f(1)− 1 ≤ 0

But then, by the intermediate value theorem, we know that there exists (at
least) an x for which g(x) = 0. Then:

g(x) = f(x)− x = 0

f(x) = x

Let’s see the main proof now. Take a price vector p. Since z(p) is Homogeneous of
Degree Zero, then we can normalize p so that we multiply all the prices by 1∑

i pl
:

p =


p1∑
pl
...
pL∑
pl


Such that

∑
l=1 pl = 1 (and therefore, knowing L− 1 prices, makes it possible to know

also the Lth price). This allows us to say that prices belong to the unit simplex with
L− 1 dimensions, i.e.:

∆L−1 =
{
p ∈ RL

+ :
L∑
l=1

pl = 1
}

Notice that ∆L−1 is a convex and compact set.
We can define the following function, g : ∆L−1 → ∆L−1 which maps its domain (in

this case the unit simplex) into itself:

g(pl) =
pl + max{0, zl(p)}

1 +
∑

l max{0, zl(p)}

Notice that
∑

l g(pl) = 1, so we are still in the simplex. And that g(pl) is a continuous
function. Thus, we can apply the conditions of the Brouwer Theorem.

Intuitively, we can see that g(pl) > pl if there is excess of demand of l (so there is no
market clearing). But we know that, by Brouwer, there exists for sure a p∗ such that:

p∗ = g(p∗)

implies

g(p∗l ) =
p∗l + max{0, zl(p∗)}

1 +
∑

l max{0, zl(p∗)}
= p∗l

for all l ∈ L = 1, . . . , L.
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Now we show that p∗ must clear all markets. A way to see this is by cross-multiplying
and rearranging terms:

p∗l
∑

max{0, zl(p∗)} = max{0, zl(p∗)}

Multiply both sides by zl(p∗)

zl(p
∗)p∗l

∑
max{0, zl(p∗)} = zl(p

∗)max{0, zl(p∗)}

Sum over L: ∑
l

zl(p
∗)p∗l

[∑
max{0, zl(p∗)}

]
=

∑
l

zl(p
∗)max{0, zl(p∗)}

Still, note that for property 3 of z(p) all the left-hand term of the equation above
goes to zero. So then, we have:∑

l

zl(p
∗)max{0, zl(p∗)} = 0

The proof is close to the ending. Notice that each member of the linear combination
above is larger or equal to zero since it is either 0 or a square [zl(p)

2]. But from the
equation above, we know that zl(p∗) must be less or equal to zero. Assume p∗ > 0.
Then, zi(p∗) must be equal to 0, otherwise, Walras’ Law is violated. If p∗ = 0, it
can be possible that zl(p∗) < 0. But then some zk(p∗) must be unbounded, therefore
contradicting the property 5 of the excess demand function. Therefore, we cannot have
p∗ = 0, and zl(p∗) = 0 for all l = 1, . . . , L:

p∗1 · z1(p∗) + . . . p∗L · zL(p∗) = 0

This means that there exists a price vector p∗ for which the excess demand function for
all goods is equal to 0. This concludes the proof.

3.4.2 Existence: the classical proof

We can now prove the equilibrium existence under the general assumptions:

A.1 For all agents i ∈ I, ui(x) is continuous

A.2 For all agents i ∈ I, ui(x) is increasing, namely ui(x) > ui(x′) if x≫ x′

A.3 For all agents i ∈ I, ui(x) is concave

A.4 For all agents i ∈ I, ei ≫ 0
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Here is a general outline of the main intuition behind the classical proof, following
Arrow & Debreu’s classical paper (Arrow and Debreu 1954) The main difference with
the previous proof is that the excess demand function is not necessarily single-valued
anymore, but it is a correspondence. Then, instead of looking for a price vector that
solves z(p) = 0, we are going to define a map Ψ that takes the set of price-aggregate
demand pairs (p, x) into itself. This map is going to be defined as follows: given a price-
aggregate demand pair, agents optimize given prices, and a new aggregate demand is
obtained. The demand is a correspondence, and we establish that is a non-empty,
convex-valued, and upper hemi-continuous correspondence of prices. Then, to obtain
new prices, we allow for a "price-player" additional agent to take the old aggregate
demand as given and set price: her choice correspondence is an upper hemi-continuos,
convex-valued and non-empty correspondence of aggregate demand. If the old prices
are equilibrium prices, then the price player won’t change prices.

Therefore, all the choices have been put together into a correspondence Ψ that maps
a price vector and an aggregate demand into new prices (chosen by the price player)
and a new aggregate demand (chosen by the agents). Then, applying a fixed-point
theorem for correspondences, the Kakutani fixed-point theorem, we argue that a fixed
point of our map corresponds to a Competitive equilibrium.

Before starting, let’s recall (without proof) the two fundamental mathematical re-
sults that will be employed in the proof.

Theorem 3.4.4 (Kakutani’s Fixed Point Theorem). Suppose A ⊂ Rn is a convex,
closed, and bounded set. Suppose f : A ⇒ A is a convex-valued, non-empty for all
x ∈ A and upper hemi-continuous correspondence. Then there exists x ∈ A such that
f(x) = x.

Theorem 3.4.5 (Maximum’s Theorem). Suppose we have a continuous correspondence
f : X × Φ → R, with X ⊆ Rn,Θ ⊆ Rm, and a correspondence Γ : Θ → X compact
valued and continuous. Let v : Θ → R be the value function:

v(θ) = max
x∈Γ(θ)

f(x, θ)

and D : Θ ⇒ X such that:
D(θ) = argmax

x∈Γ(θ)
f(x, θ)

Then:

• D(·) is not empty

• D)·) is compact-valued

• D(·) is upper hemi-continuous

• v(·) is continuous

We can start now to prove the theorem through a series of different steps.
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Step 1: normalize prices and reformulate the consumer’s problem

We need to normalize p ∈ ∆L−1 in order to avoid p = 0 (namely, that some goods are
free). Otherwise, Bi(p, p · ei) may be not compact. Define:

T = {x ∈ RL
+ : x ≤ 2 · e}

where e =
∑

i e
i. Further, we define each agent i’s constrained demand correspon-

dence:
Ψi(p) = argmax

x∈Bi(p)∩T
ui(x)

Since Bi(p)∩ T is compact and continuous, and u is continuous, then by Berge’s Max-
imum Theorem, we have ψi(p) is not empty-valued, compact-valued and upper-hemi
continuous. Furthermore, since ui(x) is quasi-concave, Ψ(p) is convex-valued.

Step 2: Introducing the "price player"

We now introduce a "Price Player," namely a fictitious player who sets the prices
to maximize the value of the aggregate excess demand (at the old prices). Roughly
speaking, every consumer takes prices as given and by solving the utility maximization
problem, finds her demand; instead, the Price Player takes the demand as given and
chooses the prices.

We define the Price Player as P . So her problem is:

ΨP (x1, . . . , xl) = argmax
p∈∆L−1

p ·
(∑

i∈I

xi −
∑
i∈I

ei
)

Where
∑

i∈I x
i−

∑
i∈I e

i is the aggregate excess demand z. This is linear in prices and
continuous in p. By Maximum Theorem, ΨP : T × T × . . . T → ∆L−1 is not-empty,
compact-valued and convex-valued.

Further, if the excess demand is strictly positive, then we can normalize the prices,
setting the highest prices = 1 and other prices equal to 0.

Step 3: A fixed-point exists

Define:
Ψ : ∆L−1 × T × T · · · × T ⇒ ∆L−1 × T × T · · · × T

as:
Ψ(p, x1, x2, . . . , xl) = ΨP (x1, x2, . . . , xl)×Ψ1(p) · · · ×Ψl(p)

The product of non-empty, convex-valued, and compact-valued upper hemi-continuous
correspondences is itself a non-empty, convex-valued, and compact-valued upper hemi-
continuous correspondence.

Therefore, we can use the Kakutani Fixed Point Theorem, and therefore there exists
a fixed point:

(p∗, x∗) ∈ Ψ(p+, x∗)

where xi∗ ∈ xi(p) for each i.
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Step 4: The fixed point is actually a competitive equilibrium

The last step is to show that (p∗, x∗) is actually a Competitive Equilibrium, namely
that it solves the Utility Maximization Problem for each agent in the economy and
clears all the markets.

In particular, we need to show that:

1. At (p∗, x∗) the aggregate excess demand is:

z∗ =
n∑

i=1

xi∗ − e ≤ 0

Suppose not. Let z∗l = max{z∗k} > 0. Then the price player must set p∗ such that
p∗ · z∗ = z∗l ≥ 0. However, the Budget constraint p · (xi − ei) ≤ 0 implies:

p∗ ·
(∑

i

x∗i −
∑
i

ei
)
= p∗ · z∗ ≤ 0

then we have reached a contradiction.

2. Individual optimality:
xi∗ ∈ argmax

x∈Bi(p∗)

ui(x)

By the previous point, we know that:

xi∗ ≤
n∑

j=1

xj∗ ≤ e ≤ 2 · e

Suppose x∗i is not optimal given p∗ without constraint T . Another way of seeing
it is that we know x∗ ∈ Ψi(p) = argmaxx ∈ Bi(p) ∩ Tui(x). We want to show
that x∗ ∈ argmaxx∈Bi(p∗) u

i(x) (which is a smaller set than Bi(p) ∩ T )). Take
x̂i ∈ Bi(p∗) such that:

ui(x̂i) > ui(xi∗)

Since Bi(p∗) is convex-valued, then:

λxi∗ + (1− λ)x̂i ∈ Bi(p∗)

for all λ ∈ [0, 1]. Further, because ui(x) is concave:

ui(λxi∗ + (1− λ)x̂i) ≥ λui(xi∗) + (1− λ)ui(xi∗) > ui(xi∗)

For λ ≈ 1, λxi∗+(1−λ)x̂i∗ ∈ Bi(p∗)∩T . This is a contradiction to the optimality
of xi∗ ∈ Bi(p∗) ∩ T .
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3. The last step is to show that the markets clear. By 1 we know that:

z∗ =
n∑

i=1

xi∗ − e ≤ 0

By Walras’ Law, we have:

p∗
( n∑

i=1

xi∗
)
= p∗ · e

so that the rice player’s value function is zero. If zi ≤ 0, for some l, then:

p∗l = 0

This means that we can simply give these excess goods to, say, agent 1 and get
markets clear to maintain individual optimality.

This concludes the proof. We have shown that in every pure exchange economy,
given very general conditions, there always exists a Competitive Equilibrium.
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Appendix : Stochastic Orders and
Order Statistics

Introduction

To study lotteries with monetary payoffs, we can compare utility functions, or in-
stead, we can compare payoff distributions. To the latter, it is related to the notion
of stochastic orders. Intuitively, there are ways according to which random outcomes
can be compared: according to the level of returns, namely if a distribution F (·) yields
always higher returns than G(·); or according to the dispersion of returns, namely F (·)
being always less risky than G(·).

To begin with, let’s recall some useful definitions:

Definition .0.2. The support of p is the set of all values such that p(xi) > 0. That is:

supp(p) =
{
xi : p(xi) > 0

}
Example .0.1. Take a fair die. The support is the set S = {1, 2, 3, 4, 5, 6}, and each
value of the set has a probability of occurrence of 1

6
.

Definition .0.3. The Cumulative Distribution Function (CDF) F (x) = P[X ≤ x]
is the probability of the event X ≤ x.

Notice that: F (x) is non decreasing, and
∑n

i P[X ≤ xi] ̸= 1.

Example .0.2. Let’s continue with the example of the fair die. Take x = 4. Therefore,
F (4) = P[X ≤ 4] is equal to 2

3
. If x = 3, then F (3) = 1

2
and so on...

Example .0.3. Let’s see another example. Consider the following problem. A decision
maker with an income of 100 must decide if to accept or reject a bet of 10$ on a fair
coin toss. There are two lotteries p and q, which correspond to respectively reject or
accept the bet, with the following distributions:

Fp(x) =

{
0 if x < 100

1 if x ≥ 100
and Fq(x) =


0 if x < 90
1
2

if 90 ≤ x < 110

1 if x ≥ 110
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$

Fp(x)

100

1

(a) The CDF of lottery p

$

Fq(x)

90 110

1
2

1

(b) The CDF of lottery q

Figure 7: CDFs of a discrete distribution

These lotteries can be conveniently represented by the graph of the corresponding
CDFs. If the decision maker rejects the bet, the probability that her income becomes
less than 100 equals 0 and that her income is at least 100 equals 1. If the decision maker
accepts the bet, the probability that her income is less than 90 is 0, the probability that
her income is at least 90 and less than 110 is 1

2
, and the probability that her income is

at least 110 is 15.

Example .0.4. Let’s see the following lotteries:

p =


0 with probability 0

100 with probability 1
2

200 with probability 1
2

and

q =


0 with probability 1

4

75 with probability 1
4

80 with probability 1
4

90 with probability 1
4

The graph of the CDFs are:
From the graph (a), P[x ≤ 100] is equal to 0, P[x ≤ 100] = 1

2
, and the probability of

obtaining at most 200 is 1. For (b), the probability of obtaining at most 75 is 1
4
+ 1

4
= 1

2
,

at most 80 is 1
2
+ 14 = 2

3
, and at most 90 is 1.

5The reasoning is the following: if you accept the bet, you start with 100 but have probability
1
2 (the coin is fair) of ending up with 90. Similarly, you have 1

2 of ending up with 110. Therefore
1
2 + 1

2 = 1
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$

Fp(x)

200

1
2

1

100

(a) The CDF of lottery p

$

Fq(x)

75 80 90

1
4

1
2

1

(b) The CDF of lottery q

Figure 8: CDFs of the distribution

First-Order Stochastic Dominance

Given a pair of lotteries, one can ask when a lottery always generates higher utility than
another, given that the decision-maker is an expected utility maximizer. To answer
this question, we need a concept of stochastic dominance, namely the First-Order
Stochastic Dominance.

Definition .0.4. Given two Cumulative Distribution Functions F and G, we say that
F First order stochastically dominates G if, for all x ∈ [0, 1], we have:

F (x) ≤ G(x)

To have a graphical example, see the following graph:

75 80 90 100 200

Fp(x), Fg(x)

x

1
4

1
2

1

This refers to the lotteries described in the example 1.4. Intuitively, p is better than
q since you can always obtain a higher payoff with a higher probability. This can be
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seen by looking at the CDFs of the two distributions represented in the figure. The
distribution of p (red) is always below to the distribution of q (blue). Therefore:

Fp(x) ≤ Fq(x)

and:
p ⪰FOSD q

An important result establishes the relationship between the definition above and
the expected value associated with each distribution, assuming that u : [0, 1] → R is
differentiable and increasing.

Theorem .0.6. Take a differentiable function u : [0, 1] → R. Then, these two state-
ments are equivalent:

1. F (x) ≥ G(x), namely F (x) first-order stochastically dominates G(x)

2. EF [u(x)] ≥ EG[u(x)]

Proof. We can write:

EF [u(x)]− EG[u(x)] =

∫ 1

0

u(x)dF (x)−
∫ 1

0

u(x)dG(x) =∫ 1

0

u(x)F ′(x)︸ ︷︷ ︸
f(x)

dx−
∫ 1

0

u(x)G′(x)︸ ︷︷ ︸
g(x)

dx =

Using integration by parts and rearranging:

u(1) · F (1)− u(0) · F (0)−
∫ 1

0

u′(x)F (x)dx− u(1) ·G(1)− u(0) ·G(0)−
∫ 1

0

u′(x)G(x)dx =

u(1) [F (1)−G(1)]︸ ︷︷ ︸
≡ 0

−u(0) [F (0)−G(0)]︸ ︷︷ ︸
≡ 0

−
∫ 1

0

u′[F (x)−G(x)]dx =

−
∫ 1

0

u′[F (x)−G(x)]dx

The last expression is greater than zero because F (x)−G(x) < 0 by FOSD, u′(·) > 0.
Therefore:

EF [u(x)] ≥ EG[u(x)]

This result is quite powerful because it is just assumed that u(·) is increasing.
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Second-Order Stochastic Dominance

FOSD involves the idea of "higher/better" versus "lower/worse." Another widely used
notion of stochastic order involves a comparison based on the relative riskiness of lot-
teries.

Given two distributions with F (x) and G(x) with the same mean EF [x] = EG[x]

(or
∫ 1

0
x · f(x)dx =

∫ 1

0
x · g(x)dx) we say that G(x) is riskier than F (x) if every risk

averse decision-maker prefers F (x) to G(x).

Definition .0.5. For any two distributions F (x) and G(x), with the same mean, F (x)
Second-order stochastically dominates (or is less risky than) G(x) if for every
non-decreasing function u : [0, 1] → R, we have:∫ 1

0

u(x) · f(x)dx ≥
∫ 1

0

u(x) · g(x)dx

Another way to describe the second-order stochastic dominance involves the notion
of super-cumulative distribution. A super-cumulative distribution is the integral
of the CDF:

S(x) =

∫ 1

0

F (x)dx

Therefore, we have F (x) = S ′(x) and S(0) = 0.
The following result establishes an equivalence between the previous definition of

SOSD and the super-cumulative distribution.

Proposition 16. Consider two distributions F (·) and G(·) with the same mean. Then
the following statements are equivalent:

1. F (·) ⪰SOSD G(·)

2. SF (x) =
∫ 1

0
F (x)dx ≤ SG(x) =

∫ 1

0
G(x)dx

Proof. We want to show that:∫ 1

0

u(x)f(x)dx︸ ︷︷ ︸
U(lF )

−
∫ 1

0

u(x)g(x)dx︸ ︷︷ ︸
U(lG)

≥ 0
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Notice that:∫ 1

0

u(x)f(x)dx =

u(1)F (1)− u(0)F (0)−
∫ 1

0

u′(x)F (x)dx︸ ︷︷ ︸
by integration by parts

=

u(1)−
∫ 1

0

u′(x)F (x)dx︸ ︷︷ ︸
since u(0)F (0) = 0

=

by integrating by parts another time, we have:

u(1)− u′(1)

∫ 1

0

F (t)dt︸ ︷︷ ︸
S(1)

−u′(0)
∫ 1

0

F (t)dt︸ ︷︷ ︸
0

−
∫ 1

0

u′′(x)

∫ 1

0

F (x)dx︸ ︷︷ ︸
S(x)

dx =

u(1)−
[
u′(1)S(1)−

∫ 1

0

u′′(x)S(x)dx
]

Therefore:∫ 1

0

u(x)f(x)dx−
∫ 1

0

u(x)g(x)dx =

u(1)− u′(1)SF (1)−
∫ 1

0

u′′(x)SF (x)dx− u(1)− u′(1)SG(1)−
∫ 1

0

u′′(x)SG(x)dx

rearranging we have:

u′(1) · [SG(1)− SF (1)]−
∫ 1

0

u′′(x)
[
SF (x)− SG(x)

]
dx

Notice that:

S(1) =

∫ 1

0

F (x)dx ≡
∫ 1

0

F (x) · 1dx =

integrating by parts

F (1) · 1− F (0) · 0−
∫ 1

0

f(x) · xdx

F (1)−
∫ 1

0

f(x) · xdx =

1− E(x)

Since F (·) and G(·) have the same mean, then:

1− EF (x)− 1 + EG(x) = 0
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Therefore: ∫ 1

0

u(x)f(x)dx−
∫ 1

0

u(x)g(x)dx =

−
∫ 1

0

u′′(x)
[
SF (x)− SG(x)

]
dx ≥ 0

Since u(·) is concave, then u′′(·) < 0 and SF (x) ≤ SG(x).
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