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1 General Equilibrium with I consumers, J firms and
L commodities

Let’s define an economy as a system composed by consumers i = 1, . . . , I, firms j =
1, . . . J and Commodities l = 1, . . . L, where I, J, L ∈ Rm

+

Some important preliminary definitions are the following:

Definition 1.1 (Feasible Allocations). An allocation (x, y) specifies a consumption
vector xi ∈ Xi for any i and a production vector for any j. An allocation is feasible if:∑

i

xIi ≤ ω̄l +
∑
j

ylj ∀l

Definition 1.2 (Pareto Optimality). A feasible allocation (x, y) is Pareto Optimal if
there is no other feasible allocation (x′, y′) such that x′

i ⪰i xi for all i and x′
i ≻i xi for

some i.

Definition 1.3 (Price Equilibrium with Transfers). Given an economy specified by
({Xi,⪰i)}Ii=1, {Yj}Jj=1, ω̄}), an allocation (x∗, y∗) and a price vector p = (p1, . . . , pL)
constitute a Price Equilibrium with Transfers (PEwT) it there is an assignment of
wealth levels (w1, . . . wl) with

∑
iwi = p · ω̄ +

∑
j p · y∗j such that:

1. for every firm j, y∗j maximizes profits in Yj. I.e. p · yj ≤ p · y∗j for all yj ∈ Yj.

2. for every consumer i, x∗
i is the maximal element for ⪰i in the budget set {xi ∈

Xi : p · xi ≤ wi}

3.
∑

i x
∗
i = ω̄ +

∑
j y

∗
j

Roughly speaking, conditions 1 and 2 say that firms and consumers are respectively
profit and utility maximizers. Instead, condition 3 is the market clearing condition: the
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sum of all individual demands equal the sum of all individual supplies plus the total
endowment of the economy.

A less general condition than PEwT is that of the Walrasian Equilibrium in Private
Ownership Economies. We define a Private Ownership economy as a system where
consumers have claims to a share of the profits of the firm j, θij ∈ [0, 1] (where

∑
i θij = 1

and
∑

j θij ∈ [0, J ]).

Definition 1.4 (Walrasian Equilibrium in a Private Ownership Economy). Given
an economy specified by ({Xi,⪰i)}Ii=1, {Yj}Jj=1, {ωi, θ :i1, · · · , θiJ}Ii=1), an allocation
(x∗, y∗) and a price vector p = (p1, . . . , pL) constitute a Walrasian Equilibrium it there
is an assignment of wealth levels (w1, . . . wl) with

∑
i wi = p · ω̄ +

∑
j p · y∗j such that:

1. for every firm j, y∗j maximizes profits in Yj. I.e. p · yj ≤ p · y∗j for all yj ∈ Yj.

2. for every consumer i, x∗
i is the maximal element for ⪰i in the budget set {xi ∈

Xi : p · xi ≤ p · ωi +
∑

j θij(p · y∗j )}

3.
∑

i x
∗
i = ω̄ +

∑
j y

∗
j

1.1 Welfare Theorems

From the definitions above one can state, and therefore prove, an important result of
theoretical economics, namely that every price equilibrium with transfers (and therefore,
any Walrasian equilibrium) is Pareto Optimal. This is the First Fundamental Theorem
of Welfare Economics.

Theorem 1.1 (The First Fundamental Theorem of Welfare Economics). If preferences
⪰i are Locally Non Satiable and if (x∗, y∗, p) is a Price Equilibrium with Transfers
(PEwT) then, the allocation (x∗, y∗) is Pareto Optimal. In particular, any Walrasian
Equilibrium is Pareto Optimal.

Proof. Suppose (x∗, y∗, p) is a PEwT with the following wealth levels (w1, . . . , wl) and∑
i = p · ω̄ +

∑
j p · y∗j .

By the condition 2 in the definition of PEwT, we know that each consumer maxi-
mizes her utility. Put in another way:

xi ≻ x∗
i ⇒ p · xi > ωi (1)

Or, in words, if there exists a bundle which is preferred to the optimal bundle, then
it is not in the budget set.

Since ⪰i are Locally Non Satiated, then:

xi ⪰ x∗
i ⇒ p · xi ≥ ωi (2)

Let’s prove (2), which can be rewritten as follows: If xi > x∗
I ⇒ p · xi > ωi and

preferences are Locally Non Satiatied, then xi ⪰ x∗
i ⇒ p · xi ≥ ωi.

2



To see this, suppose that the condition above does not hold. Then, we write:

xi ⪰ x∗
i ⇒ p · xi ≤ ωi

In words, xi belongs to the Budget Set. But then, since preferences are Locally Non
Satiated, there exists a x′

i such that given ||x′
i − xi|| < ϵ, x′

i ≻i xi and x′
i is feasible (i.e.

x′
i · p < ωi)

But preferences ⪰i are transitive, so:

x′
i ≻i xi ⪰i x

∗
i ⇒ x′

i ≻ x∗
i

This contradicts the optimality of x∗
i .

Let’s go back now to the main proof. Consider now an allocation (xi, yi) that Pareto
Dominates (x∗, y∗). I.e. xi ⪰ x∗

i ∀i and there is at least one consumer for which xi ≻ x∗
i

We want to show that such an allocation is not feasible, and therefore the equilibrium
allocation is Pareto Optimal.

By (2):
p · xi ≥ ωi ∀i

and by (1):

p · xi > ωi

for at least some i. Then∑
i

p · xi >
∑
i

ωi = p · ω̄ +
∑
j

p · y∗j

From condition 1 in the definition of PEwT we know that firms are profit maximizers.
So y∗j is the quantity of input that maximizes profits. So:

p · ω̄ +
∑
j

p · y∗j ≥ p · ω̄ +
∑
j

p · yj

Then we have: ∑
i

p · xi > p · ω̄ +
∑
j

p · y∗j ≥ p · ω̄ +
∑
j

p · yj

And therefore, by transitivity:∑
i

p · xi > p · ω̄ +
∑
j

p · yj

This means that (x, y) is not feasible. Then (x∗, y∗) is Pareto Optimal.

Note that the assumption of Locally Non Satiation of preferences is necessary. Fur-
thermore, we are assuming no externalities.
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Theorem 1.2 (Second Fundamental Theorem of Welfare Economics). Consider an
economy specified by ({Xi,⪰i)}Ii=1, {Yj}Jj=1, ω̄}) and suppose that every Yi is convex and
every ⪰ is convex and locally non satiated. Then, for every Pareto Optimal allocation
(x∗, y∗) there is a price vector p = (p1, . . . , pL) ̸= 0 such that (x∗, y∗, p) is a price
quasi-equilibrium with transfers.

Proof. Let’s start by defining, for every agent, the set of consumptions preferred to x∗
i :

Vi = {xi ∈ Xi : xi ≻i x
∗}

Define also the set of aggregate consumption bundles:

V =
∑

Vi =
{∑

i

xi ∈ RL : x1 ∈ V1 . . . xI ∈ VI

}
and the aggregate production set:

Y =
∑
j

Yj =
{∑

j

∈ RL : y1 ∈ Y1, . . . yj ∈ YJ

}
V can be split into I individual consumptions, each preferred by its corresponding

consumer to x∗
i . Instead of Y we can take Y + {ω̄} which is the aggregate production

set with its origin shifted to ω̄.
Let’s divide the proof in several steps:

1. Note that Vi is convex (since preference are convex). Then even V and Y are
convex since the sum of each finite number of convex sets is itself convex.

2. Notice that V ∩ (Y + {ω̄}) = ∅. Indeed if there is a vector in both sets, then,
with the given endowments and technologies it would be possible to produce an
aggregate vector that could be used to give every consumer i a consumption
bundle preferred to xi.

3. Still since V and Y +{ω̄} are both convex, we can see that there is a price different
to zero and a number r such that p · z ≥ r for every z ∈ V , and p · z ≤ r for every
z ∈ Y + {ω̄} (This is the Separating Hyperplane Theorem for Convex Sets).

4. If xi ⪰i x
∗
i for every i, then p · (

∑
i xi) ≥ r.

5. p · (
∑

i x
∗
i ) = p · (ω̄ +

∑
j y

∗
i ) = r

6. For every j, we have p · yj ≤ p · y∗i for all yj ∈ Yj For any firm j and yj ∈ Yj we
have yj +

∑
h̸=j y

∗
h ∈ Y . Then:

p ·

(
ω̄ + yj +

∑
h̸=j

y∗h

)
≤ r = p ·

(
ω̄ + yj +

∑
h̸=j

y∗h

)

Hence, p · yj ≤ p · y∗j
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7. For every i, if xi ≻ x∗
i , then p ·xi ≥ p ·x∗

i . Then, considering any xi ≻ x∗
i we have:

p ·

(
ω̄ + xi +

∑
k ̸=i

x∗
k

)
≤ r = p ·

(
ω̄ + xi +

∑
k ̸=i

x∗
k

)

Hence, p · xi ≤ p · x∗
i

8. Since step 7 and 8 fulfill conditions ii) and iii) in the definition Price Equilibria
with Transfers, and (x∗, y∗) is feasible, then the proof is complete.

1.2 Existence of an Equilibrium

Let’s consider the issue of the existence of the equilibrium in a simplified framework,
that of pure exchange economy. This is characterized by continuous, strictly convex
and strongly monotone ⪰i and

∑
i ωi >> 0.

The existence of an equilibrium means the existence of a price vector p that supports
the Pareto optimal allocatio (x∗, y∗) and that clears all the L markets simultaneously.

To do so, we need to define two further objects, namely the Excess Demand Function
of agent i, zi(p) and the Aggregate Demand Function z(p). For each agent the EDF is:

zi(p) = xi(p, p · ωi)− ωi

Instead, the Aggregate EDF is:

z(p) =
∑
i

zi(p) =
∑
i

xi(p, p · ωi)−
∑
i

ωi

More in detail, then, we can interpret z(p) as a vector with L components, one for
each commodities, that defines the excess demand in any market for any good. The
Market clearing condition requires that z(p) is a null vector, i.e. that markets clear for
all of the 1, . . . , L goods

In the existence of equilibrium, the key idea is that of using some properties of z(p)
in order to set up the conditions for using a fixed point technique (in the simplest case,
the Brouwer Fixed Point Theorem, see below). Therefore, it is important to outline, as
well as to discuss briefly, some the properties of z(p).

1. z(p) is continuous. This property simply derives from the fact that xi(p, p · ωi),
the Walrasian Demand, is continuous in p. And the sum of continuous function
is a continuous function too.

2. z(p) is homogenous of degree zero. Again, this derives from the Walrasian De-
mand. Indeed, if all the prices change by a factor k, then Walrasian Demand does
not change (i.e. it is Homogenous of Degree Zero). This property, as well as the
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one above, is preserved under summation (whereas
∑

i ωi does not count, since it
is a constant)

3. p · z(p) = 0 for all p. Notice that:

⇒ p ·

[∑
i

xi(p, p · ωi)−
∑
i

ωi

]
= 0∑

i

[p · x(p, p · ωi)− p · ωi] = 0

But by Walras’ Law p ·x = w, therefore, all above equals to zero. It is interesting
to notice a point. If we have n-goods, it is sufficient to clear the market for
n− 1-goods, then, also the market for the nth-good clear.

4. There is an s > 0 such that zl(p) > −s for every l and every p. This because the
lowest value the Walrasian Demand can take is 0 (x ∈ R2

+). So in the case of all
demands equal to 0, z(p) is given just by the total initial endowment.

5. If pn → p, where p ̸= 0 and pl = 0 for some l, then max{z1(pn), . . . , zL(pn)} → ∞.
This is a requirement needed to keep track of the possibility of Giffen Goods (recall
that the Walrasian Demand does not necessarily satisfy the Law of Demand).

Then, it is possible to state and demonstrate the theorem for the existence of an
equilibrium. Notice that existence means that there is at least one solution, but still
notice that there could be more than one.

Theorem 1.3 (Existence of an Equilibrium). Let the function z(p) satisfy the properties
above. Then the system z(p) has a solution. That is, a Walrasian equilibrium exists
in a pure exchange economy in which

∑
i ωi >> 0 and every consumer has continuous,

strictly convex and strongly monotone preferences.

Proof. Take a price vector p̂:

p̂ =

p̂1
...
p̂l


Since z(p) is Homogenous of Degree Zero, then we can normalize p̂ so that we

multiply all the prices by 1∑
i pl

:

p̂ =


p̂1∑
p̂l
...
p̂L∑
p̂l


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f(x)
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Figure 1: f : [0, 1] → [0, 1]

Such that
∑

l=1 pl = 1 (and therefore, knowing L − 1 prices, makes it possible to
know also the Lth price). This allows use to say that prices belong to the unit simplex
with L− 1 dimensions, i.e.:

SL−1 =

{
p ∈ RL

+ :
L∑
l=1

pl = 1

}
To show that there is a vector p ∈ SL−1 that clear all the markets, we use a Fixed

Point Technique, in particular the Brouwer Fixed Point Theorem.

Theorem 1.4 (Brouwer Fixed Point Theorem). Let f : X → X, f continuous, X
compact. (i.e. a function that maps X into itself) Then, there exists an x ∈ X such
that f(x) = x.

Proof. Figure 1 shows very simply that it is impossible to have a continuous function
from the closed interval [0, 1] into itself that does not cross at least once the 45 degree
line, i.e. the line of points where f(x) = x.

This renders a simple image of the theorem. Let’s enter more in some (simple)
details. Let’s define:

g(x) = f(x)− x

Therefore, we can write:

g(0) = f(0)− 0 ≥ 0

and

g(1) = f(1)− 1 ≤ 0

But then, by the Intermediate Value Theorem (see figure 2) we know that there
exists (at least) an x for which g(x) = 0. Then:
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g(x)

x
g(x) = 0

Figure 2: A simple graphical representation of the Intermediate Value Theorem

g(x) = f(x)− x = 0

f(x) = x

Let’s now go back to the main proof.
We can define the following function, g : SL−1 → SL−1 which maps its domain (in

this case the unit simplex) into itself:

g(pl) =
pl + max{0, zl(p)}

1 +
∑

l max{0, zl(p)}
Notice also that

∑
l g(pl) = 1. So we are still in the simplex. And that g(pl) is a

continuous function so that we can apply the conditions of the Brouwer Theorem.
Intuitively, we can see that g(pl) > pl if there is excess of demand of l (so there is no

market clearing). But we know that, by Brouwer, there exists for sure a p∗ such that:

p∗ = g(p∗)

implies

g(p∗l ) =
p∗l + max{0, zl(p∗)}

1 +
∑

l max{0, zl(p∗)}
= p∗l

for all l ∈ L = {1, . . . , L}.
A way to see this is cross-multiplying and rearranging terms:

p∗l
∑

max{0, zl(p∗)} = max{0, zl(p∗)}

Multiply both sides by zl(p
∗)

zl(p
∗)p∗l

∑
max{0, zl(p∗)} = zl(p

∗)max{0, zl(p∗)}
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Sum over L:

∑
l

zl(p
∗)p∗l

[∑
max{0, zl(p∗)}

]
=
∑
l

zl(p
∗)max{0, zl(p∗)}

Still note that for property 3 of z(p) all the left-hand term of the equation above
goes to zero. So then, we have:∑

l

zl(p
∗)max{0, zl(p∗)} = 0 (3)

The proof is close to the ending. Notice that each member of the linear combination
above is larger or equal to zero since it is either 0 or a square [zl(p)2]. But from equation
3 above, we know that zl(p∗) must be less or equal to zero. However, since p∗ ·z(p∗) = 0
and p∗ > 0 (prices cannot be negative or equal to zero), then zl(p

∗) = 0, for all
l ∈ L = {1, . . . , 0}.

Or, written in the extensive form:

p∗1 · z1(p∗) + . . . p∗L · zL(p∗) = 0

This means that exists a price vector p∗ for which the excess demand function for
all goods is equal to 0. This concludes our proof.
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