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Game Theory is about strategic interactions. It is formal since it uses mathematical
models and strategic, since what each player obtains also depends on what other players
do. In particular, each player faces uncertainty about what other players do.

Therefore, the founding block of Game Theory is the analysis of the Single Person
Decision Theory, i.e., the analysis of choice under certainty.

1 Single person problem: choice under uncertainty
First, we denote the fundamentals of the problem:

The set of actions is:
A = {a1, a2, . . . , an}

The set of states is:
Ω = {ω1, ω2, . . . , ωm}

The payoff function is:
u : A× Ω −→ R

This function yields a utility denoted as u(a, ωj). If:

u(ai, ωj) > u(ak, ωj)

It means that in the state j, the decision maker strictly prefers action i to action k.
Let’s see a very simple example: one has to decide if to take an umbrella when leaving

the house. She faces two possible actions, A = {Taking an umbrella,Not taking an umbrella}
and faces two possible states of the world, Ω = {Sunny,Rainy}. We could represent
this situation in the following simple matrix:

Sunny Rainy
No Umbrella 3 0

Umbrella 0 3

Then the combination {No Umbrella, Sunny} gives a total payoff of 3, {No Umbrella,Rainy}
gives 0, and so on.
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1.1 Domination and Expected Utility

Let’s now introduce the concept of domination.

Definition 1.1 (Domination). Action a strictly dominates action b if u(a, ω) > u(b, ω) ∀ω ∈
Ω. Then b is strictly dominated

Definition 1.2 (Weak Domination). Action a weakly dominates b if u(a, ω) ≥ u(b, ω) ∀ω ∈
Ω and u(a, ω) > u(b, ω) for some ω ∈ Ω.

Examples:
In the following matrix, a strictly dominates b. Indeed for each ωi the payoffs of a

are greater than those of b.

ω1 ω2 ω3

a 1 3 0
b 0 -1 5

Instead, in the matrix below a only weakly dominates b. Indeed, for ω3, the payoffs
are equal.

ω1 ω2 ω3

a 1 3 0
b 0 -1 0

Therefore, we say that a is strictly (weakly) dominant if it strictly (weakly) domi-
nates any a′ ̸= a. This roughly means that a is optimal no matter what. Then, unless
we have dominant strategies, we must think about probabilities (or beliefs).

Put in a simple way, beliefs are probability distributions about different states of
the world. They can be represented as the vector q:

q = (q(ω1), q(ω2), . . . , q(ωm))

where each q(ωj) represents the probability of an event. So q(ωj) ≥ 0 j = 1, . . . ,m
and

∑m
j=1 q(ωj) = 1. Finally, we also define ∆(Ω) as the set of all possible beliefs.

Furthermore, agents are expected utility maximizers (von Neumann-Morgenstern
Utility Maximizers). This means that we can write their utility function as follows:

U(a, q) =
n∑

j=1

q(ωj)u(a, ωj)

Where U is a real-valued utility function defined as: U : A × ∆(Ω) −→ R. Then,
for two actions a, b we say that u(a, ω) > u(b, ω) if:

m∑
j=1

q(ωj)u(a, ωj) >
m∑
j=1

q(ωj)u(b, ωj)
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1.2 Best Response and Never a Weak Best Response

Two other fundamental concepts must be defined: Best Response (BR) and Never a
Weak Best Response (NWBR).

Definition 1.3 (Best Response). Given (A,Ω, u, q) action a is a Best Response to
q ∈ ∆(Ω) if and only if U(a, q) ≥ U(a′, q) ∀a′ ∈ A.

Let’s see an example. Recall the situation above, the decision between taking an
umbrella or not, facing the possible states of the world {Sunny, Rainy}. See the matrix
below:

Sunny Rainy
No Umbrella 5 0

Umbrella 1 3

Now one can attribute a probability to the two different states, namely q(q1, q2) ≡
q = (q1, (1− q1)). Then we can compute the utility associated with each action:

U(NU, q) = 5q1 + (1− q1)0 = 5q1

and

U(U, q) = q1 + 3(1− q1) = 3− 2q1

To see what is optimal, let’s see Figure 1. Then before q1 = 3
7

taking an umbrella
is the optimal action. After q1 = 3

7
Not taking an umbrella is optimal. Finally, when

q1 =
3
7
, the optimal choice is to be indifferent.

U

q1
3
7

U(NU, q)

U(U, q)

Figure 1: Best Response

Formally, we can write BR(q) as:

BR(q) =


U if q1 < 3

7

U ∼ NU if q1 = 3
7

NU if q1 > 3
7
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Let’s now relate the Best Response and Domination.

Proposition 1. If a is (weakly) dominant, then a is a Best Response to any belief
q ∈ ∆(Ω).

Proof. ∀a′ ̸= a we can write u(a, ω) ≥ u(a′, ω) ∀ω, with at least one strict inequality.
In terms of expected utility, given a vector of beliefs q = (q1, . . . , qm), we can write:

U(a, q) =
m∑
j=1

q(ωj)u(a, ωj) ≥
m∑
j=1

q(ωj)u(a
′ω) = U(a′, q)

Since u(a, ωj) ≥ u(a′, ωj).

Another fundamental idea is that of Never a Weak Best Response. Plainly speaking,
an action a is NWBR when, no matter the belief, it is never optimal.

Definition 1.4 (NBWR). Action a is Never a Weak Best Response if it does not exist
a q ∈ ∆(Ω)) such that a is BR(q).

From this definition, a fundamental proposition can be stated.

Proposition 2. If a is strictly dominated, then it is an NWBR.

Proof. To see this just apply the definition. a is strictly dominated if exist a a′ such
that u(a′, ω) > u(a, ω), ∀ω ∈ Omega. Then take a q ∈ ∆(Ω). We can write:

U(a′, q) =
m∑
j=1

q(ωj)u(a
′, ωj) >

m∑
j=1

q(ωj)u(a, ωj) = U(a, q)

Note that the result above holds only with strict domination. With weak domina-
tion, the proposition is not true. To see this, let’s look at a simple counterexample:

ω1 ω2

a 2 3
b 2 5

a is weakly dominated by b. But if we allow for q = (1, 0), then you can choose both
a and b, since U(a, q) = 1(2) + 0(3) = 1(2) + 0(5) = U(b, q).

Proposition 2 states that if an action is strictly dominated, then it is never a Weak
Best Response. Then, one can ask if also the converse is true, namely that if an action
is Never a Weak Best Response, then it is strictly dominated. The answer is yes, but
to see this one has to introduce the notion of Mixed Strategies.
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1.3 Mixed Strategies

Let’s start with a simple example.

ω1 ω2

a 3 0
b 0 3
c 1 1

It is apparent that c is not strictly dominated by any other action. Take q = (q, 1−q)
and let’s compute the following:

U(a, q) = 3q ≥ 1.5 for q ≥ 1

2

U(b, q) = 3− 3q ≥ 1.5 for q ≤ 1

1

U(c, q) = 1

Then, no matter what values q takes, you can always guarantee a payoff greater or
equal to 1.5. c is an NWBR even if it is only weakly dominated. Let’s now introduce
an action d as a randomization of a and b.

u(d, ω1) =
1

2
u(a, ω1) +

1

2
u(b, ω1) =

3

2

u(d, ω2) =
1

2
u(a, ω2) +

1

2
u(b, ω2) =

3

2

So d strictly dominates c. Therefore, when we just look at actions, then it is not
true that NWBR implies strict domination. But introducing mixed strategies, it is true,
instead.

A mixed strategy is a randomization over actions:

σ = (σ(a1), σ(a2), . . . , σ(an))

Since σ is a probability distribution, then σ(ai) ≥ 0 and
∑n

i=1 σ(ai) = 1. Further-
more, we can define ∆(A) as the Set of all Mixed Strategies.

Notice that pure strategies are a special case of mixed strategies. Indeed we can
write a pure strategy as (0, 1, 0, . . . , 0).

Given a mixed strategy σ, a useful concept is that of Support for that mixed strategy.

Definition 1.5. The Support of σ, denoted Supp(σ), is the set of actions for which the
attached probability is non-null, i.e.

Supp(σ) = {a : σ(a) > 0}

5



Allowing for mixed strategies, the agent now faces two different types of uncertainty.
One,σ is endogenous, that is, before knowing what state will occur, the agent must
decide which strategy to play. The other,q is exogenous, and it concerns the beliefs of
each player on the probability each state occurs.

Now we can formally write the utility function as:

U : ∆(A)×∆(Ω) −→ R
And:

U(σ, q) =
∑
a∈A

∑
ω∈Ω

σ(a)q(ω)u(a, ω)

=
∑
a∈A

σ(a)
∑
ω∈Ω

q(ω)u(a, ω)︸ ︷︷ ︸
U(a, q)

=
∑
a∈A

σ(a)U(a, q)

(1)

To get rid of zero probabilities, one can write
∑

a∈A σ(a)U(a, q) as
∑

a∈Supp(σ) σ(a)U(a, q).
We can redefine domination as follows.

Definition 1.6. Action a is strictly dominated if it exists a σ ∈ ∆(A) such that
u(σ, ω) > u(a, ω)

An action cannot be strictly dominated by Pure Strategies, but be strictly dominated
in Mixed Strategies. Returning to the example at the beginning of this section, then we
can write the following mixed strategy that strictly dominates c: σ = (1

2
, 1
2
, 0).

We can now also redefine the notion of Best Response.

Definition 1.7 (Best Response Mixed Strategy). σ ∈ ∆(A) is a BR to q if U(σ, q) ≥
U(a, q) ∀a ∈ A

Notice that a Mixed Strategy is optimal if it is better to any Pure Strategy, so it is
sufficient to check for those.

Proposition 3. A Mixed Strategy σ is a BR to q if and only if all the actions in the
Support of σ are BR to q

Proof. Take a σ which is BR(q). Then U(σ, q) ≥ U(a, q) ∀a ∈ A implies that U(σ, q) ≤
maxU(a, q). However, by optimality of σ, we have also U(σ, q) ≥ U(a, q) for all a. This
implies that U(σ, q) = maxU(a, q). And U(a, q) = U(a′, q) for all a, a′ ∈ Supp(σ).

Given a system of beliefs, a BR always exists. If a, b are BR, any randomization is
a BR. Therefore, there are infinitely many. If there is only one BR, this is pure.

Notice also that an action may be strictly dominated by a mixed strategy without
being strictly dominated by any pure strategy (see the example at the beginning of this
section).

Finally, an important result can be stated concerning mixed strategies and NWBR.
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Proposition 4. A strategy a is NWBR if and only if it is strictly dominated.

Proof. ⇐ If a is strictly dominated, then it is NWBR. This is shown in Proposition 2
above.

Let’s see ⇒. If a strategy a is NWBR, then it is strictly dominated. Assume, by
contradiction, that a is not strictly dominated. Then it can be found some q ∈ ∆(Ω)
such that a ∈ BR(q).

We can write xa as the vectors of payoffs of action a through different states of the
world, namely:

xa = (u(a, ω1), u(a, ω2), . . . , u(a, ωm)) ∈ Rm.

And we define as X the set of all possible payoff vectors:

X = {x ∈ Rm : x = (u(σ, ω1), u(σ, ω2), . . . , u(σ, ωm)) for some σ ∈ ∆(A)}

Notice that xa ∈ X and X is convex. This means that for any two x, x′ ∈ X, also
their convex combination λx+ (1− λ)x′ ∈ X, ∀x ∈ X and λ ∈ [0, 1].

Finally, define:

Y = {y ∈ Rm : yi > xa, i = 1, . . . ,m}

As the set of all payoffs that are preferred to xa.
Notice that X and Y are disjoint, i.e. X∩Y = ∅. This can be seen by contradiction.

Then assume the existence of a x̃ which belings both to X and Y . This means that
x̃ = (U(σ, ω1), . . . , u(σ, ωm) and u(σ, ωi) > u(a, ωi) for all i = 1, . . . ,m. Hence u(σ, ω) >
u(a, ω), but this contradicts the hypothesis of a being undominated.

Since X, Y are disjoint, we can apply the Supporting Hyperplane Theorem. This
states that, given two disjoint, convex sets, then exist a vector q ∈ Rm ̸= (0, 0, . . . , 0)
and a c ∈ R such that:

q · x ≥ c ∀x ∈ A

and
q · y ≤ c ∀y ∈ B

Roughly speaking, this theorem states that given two disjoint, convex sets, I can
always draw a hyperplane (i.e., a vectorial subspace a1 × x1 + a2ẋ2 + · · · + amẋm = b)
that separate them.

By this theorem, we can write:

q · y ≥ xa · q︸ ︷︷ ︸
q

∀y ∈ Y

and

q · x ≤ xa · q︸ ︷︷ ︸
q

∀x ∈ X
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Notice that qi ≥ 0. To see this, assume, by contradiction, it is not, so q1 < 0. Take
a y′ ∈ Y such that y′ = (u(a, ω1) + ∆, u(a, ω2) + 1, . . . , u(a, ωm) + 1) and ∆ > 0, so
y′ ∈ Y . By SHT, q1 · (u(a, ω1)+∆)+ q2 · (u(a, ω2)+1)+ · · ·+ qm · (u(a, ωm)+1) ≥ q ·xa.
But taking the limit for ∆ → ∞, this gives −∞, contradicting the SHT. Then, qi ≥ 0
for all i.

Let’s show also that
∑m

i=1 qi = 1. Indeed, since all qi are positive, we can write q as
( q1∑m

i=1 qi
, q2∑m

i=1 qi
, . . . , qm∑m

i=1 qi
).

Then q is a belief, i.e. q ∈ ∆(Ω). Recall that we have assumed that a ∈ BR(q).
Then, we have:

q · x ≤ q · xa ∀x ∈ X

Take an action b ∈ A and define x̃ = (u(b, ω1), u(b, ω2), . . . , u(b, ωm)). This implies:

x̃ · q ≤ xa · x

and:
m∑
i=1

qi · u(b, ωi) ≤
m∑
i=1

qi · u(a, ωi) ⇒ U(b, q) ≤ U(a, q)

This contradicts the claim that a ∈ BR(q).
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2 Games in Strategic Form with Complete Informa-
tion

2.1 Fundamentals

These are situations where players move only once and simultaneously. Simultaneity
means that there is no coordination. No player has more information on the actions of
other players.

A Game can be defined as follows:

G = (S1, . . . , Sn, u1, . . . , un)

A game is characterized by a set of actions, one for each player, and a set of utility
functions that give a payoff. For each player i we can define a non-empty set of actions
(pure strategies): Si.

The set of all possible strategy profiles (formally the Cartesian product of the set of
all individual strategies):

S =
n×

j=1

Sj

A strategy profile lists the actions taken by all players. Fixing a player i, we can
also write:

S−i =
n×

j ̸=i

Sj

So we can write an entire strategic profile as s = (si, s−i).
The utility function is formally defined as:

u : S −→ R

or ui(s) = ui(s1, . . . , sn).
Mixed strategies are randomizations over possible actions.

Si = (s1i , s
2
i , . . . , s

n
i )

Is the set of available strategies for player i. A (generic) mixed strategy over that
actions can be written as:

σi = (σi(s
1
i ), σi(s

2
i ), . . . , σi(s

n
i ))

Where σi(s
j
i ) ≥ 0 is the probability that player i attaches to action j (and therefore∑n

j=1 σi(s
j
i ) = 1).

We also define ∆(Si) as the set of all mixed strategies for player i.
The support of σi is the set of all strategies played with positive probabilities:
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Supp(σi) = {si ∈ Si : σi(si) > 0}

As in the case of pure strategies, we can write mixed strategies as:

σ = (σi, σ−i)

Example 1: Battle of Sexes I

A couple, Alice and Bob, must choose where to go out on Friday night. They cannot
communicate and can choose between two different alternatives, Football or Opera.
The worst outcome for both is that where they do not meet. We can represent their
payoffs in the following matrix (the first payoff refers to Alice, the second to Bob):1

Alice | Bob Opera Football
Opera 3,1 0,0

Football 0,0 1,3

Assuming for Alice and Bob the following mixed strategies:

σA =

(
1

3
,
2

3

)
and σB =

(
3

4
,
1

4

)
We can compute the total payoff of Alice associated with these strategies:

UA(σA, σB) =

(
1

3
· 3
4

)
· 3︸ ︷︷ ︸

(σA(Op) · σB(Op)) · UA(Op,Op)

+

(
1

3
· 1
4

)
· 0︸ ︷︷ ︸

(σA(Op) · σB(F )) · UA(Op, F )

+

(
2

3
· 3
4

)
· 0︸ ︷︷ ︸

(σA(F ) · σB(Op)) · UA(F,Op)

+

(
2

3
· 1
4

)
· 1︸ ︷︷ ︸

(σA(F ) · σB(F )) · UA(F, F )

(2)

1To read this matrix: if both Alice and Bob meet at the Opera, she receives a utility of 3 and he
1. If they meet at the Football stadium, he receives 3 and she just 1. If she goes to Opera and he to
the Football stadium (and vice-versa), both receive a utility of 0.
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This can be rearranged as follows:

1

3

[
3

4
· 3 + 1

4
· 0

]
︸ ︷︷ ︸
σA(Op) · [UA(Op, σB)]

+
2

3

[
3

4
· 0 + 1

4
· 1

]
︸ ︷︷ ︸
σA(F ) · [UA(F, σB)]

=

=
∑

σA∈SA

σA(aA)UA(aA, σB)

More in general, the utility of player i from a mixed strategy σ can be computed in
the following way:

Ui(σ) = U(σi, σ−i) =∑
(s1,...,sm)

(
n∏

j=1

σj(sj)

)
ui(s1, . . . , sm) =

∑
si∈Si

∑
s−i∈S−i

(
σi(si)

∏
j ̸=i

σj(sj)

)
Ui(si, s−i) =

∑
si∈Si

σi(si)
∑

s−i∈S−i

(∏
j ̸=i

σj(sj)

)
Ui(si, s−i)︸ ︷︷ ︸

Ui(si, σ−i)

=

∑
si∈Supp(σi)

σi(si)Ui(si, σ−i)

2.2 Dominance in Games

As in the single-person problem, we can assess the actions of each player through the
idea of dominance. This means checking for all possible action profiles of the opponent.

Definition 2.1 (Strict Domination). A strategy si is strictly dominated if it exists a
σi ∈ ∆(Si) such that ui(σi, s−i) > u(si, s−i) ∀s−i ∈ S−i.

Furthermore, a strategy si ∈ Si is strictly dominant if and only if it strictly domi-
nates any other s′i ̸= si.

Definition 2.2 (Weak Domination). A strategy si is weakly dominated if it exists
a σi ∈ ∆(Si) such that ui(σi, s−i) ≥ u(si, s−i) ∀s−i ∈ S−i, with at least one strict
inequality.

Example 2: Prisoner’s Dilemma

Two men are arrested for a serious crime, but the police do not have enough evidence
to arrest both of them. Still, they do not know that. Furthermore, they cannot com-
municate, and each prisoner does not trust what the other will do. If both stay silent,
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they will be charged just with a minor felony (1 year of prison each). If one confesses,
he will be absolved and the other arrested, taking the maximum punishment (9 years
of prison). Finally, if both confess, they will be condemned to 6 years of prison each.
This situation can be represented in the following matrix:

Prisoner 1 | Prisoner 2 Silent Confess
Silent -1,-1 -9,0

Confess 0,-9 -6,-6

This is an example of a game with a strictly dominant strategy, namely (Confess,Confess).
However, this outcome is Pareto-Dominated by another strategy, (Silent, Silent).

Example 3: Second Price Auctions (Vickrey Auctions)

The basic idea of this kind of auction is that every player makes a bid, and the winner,
namely the highest bidder, does not pay the price she bid but instead the price bid by
the second-highest bidder.

The setup of this model is the following. Si = R+ and each i bid bi ∈ Si. Every player
has an evaluation vi of the object to be auctioned. The payoff function is following:

ui(b1, . . . , bi, . . . , bn) =


0 if bj > bi for some j ̸= i

vi − bi bi > bj ≥ bk for all k ̸= i
vi−bi
m+1

if bi ≥ bk for all k

In words, if the bid of i is inferior to the winning bid, i does not gain anything. If
bi is winning, then what i receives is the difference between her evaluation and bj (the
second highest bid). Finally, in the case of ties, i receives the difference between her
evaluation and her bid, dividing the number of bidders who bid the same.

We want to show that bidding her own evaluation is weakly dominant.
Assume b̂ = maxj ̸=i bj. We have three cases.
First case: b̂ < vi. The highest bid is lesser than i’s evaluation. Then:

• If i bids her own evaluation, then bi = vi i wins and the payoff is vi − b̂ > 0.

• bi > b̂ i wins and the payoff is vi − b̂ > 0.

• bi = b̂ There is a tie, and the payoff of i is at most vi−b̂
2

< vi − b̂ (in the case the
tie is only among two players).

• bi < b̂ i loses and the payoff is 0.

Second case: b̂ > vi. The highest bid is greater than i’s evaluation. Then:

• bi = vi i loses and the payoff is 0.

• bi > b̂ i wins and the payoff is vi − b̂ < 0.

12



• bi = b̂. There is a tie, and the payoff is at most vi−b̂
n

< 0.

• bi < b̂. i loses and the payoff is 0.

Third case: b̂ = vi. The highest bid is exactly equal to i’s evaluation. Then:

• bi = vi. There is a tie, and the payoff is 0.

• bi > b̂. i wins, and the payoff is 0.

• bi = b̂. There is a tie, and the payoff is 0.

• bi < b̂ i loses and the payoff is 0.

In any case, bidding exactly vi yields a payoff larger or equal to all other payoffs
that one can obtain by bidding something else. Therefore bi = vi is a weakly dominant
strategy.

2.3 Iterative Removal of Dominated Strategies

Some games can be solved by dominant strategies. Indeed, if players are rational, they
play these strategies. Still, notice that most games cannot be solved through dominance.

Furthermore, even if no player has strictly dominant strategies, then there can be
strictly dominated strategies. An example is given in the following matrix:

Player 1 | Player 2 Left Mid Right
Up 1,0 1,2 0,1

Down 0,3 0,1 2,0

If player 2 is rational, he won’t play Right, since it is strictly dominated by Mid
(2 > 1, 1 > 0). We can remove Right from the set of actions of 2. So we have the
following matrix:

Player 1 | Player 2 Left Mid
Up 1,0 1,2

Down 0,3 0,1

If player 1 knows that 2 is rational, and she is rational too, then will play Up since
it is strictly dominant over Down (1 > 0, 1 > 0). Therefore we have:

Player 1 | Player 2 Left Mid
Up 1,0 1,2
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Player 2 knows that player 1 knows he is rational, then he will play Mid since it
is dominant. The game is solved since both players’ set of actions are now Singleton.
The outcome is (Up,Mid), and the payoff is (1, 2).

This is an example of the working of an algorithm called "Iterated Deletion of
Strictly Dominated Strategies" (IDSDM). According to this procedure, a game is solved
if, at the end, the set of all actions is reduced to a Singleton, namely, it contains only
one element.

Formally, we have a game G = (S1, . . . , Sn, u1 . . . , un) and define G = G0.At any
step k − 1(where k ≥ 1) we have a game:

Gk = (Sk
1 , . . . , S

k
n, u1, . . . , un)

Where Sk
i = {si ∈ Sk−1

i : si is not strictly dominated in Gk−1} In words, the
actions that survive, at any step, are those that are not dominated by any other available
action, given the survived actions of other players. Such a deletion process can lead to
the following outcome:

S∞
i =

∞⋂
k=0

Sk
i

Therefore we can solve a game through IRSDS if and only if S∞
i is a Singleton.

Although this procedure is rarely applicable because it requires strict domination
and does not work with weak domination (see below), still it displays some fashionable
properties. One is that if S∞

i is a singleton, then it is a Nash Equilibrium (see below).
The other is stated in the following result.

Proposition 5. The set of strategies that survive IRSDS does not depend on the order
of deletion.

Proof. (Missing)

Through an example, let’s see why the iterative removal of weakly dominated strate-
gies does not work. Indeed, in this case, the order of deletion matters.

Player 1 | Player 2 Left Mid Right
Top 50,0 5,5 1,-10

Bottom 50,50 5,0 0,-10

If we start with player 1, Top weakly dominates Bottom, so player 1 deletes Bot-
tom. In that case, for player 2 Mid is strictly dominant, so the outcome of the game
is (Top,Mid).

But if we start with player 2, then he eliminates Right, which is strictly dominated.
In that case, the game has no solution.
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A different procedure is the "Iterative removal of NWBR." Recall that an NWBR is
a strategy si for which it does not exist a mixed strategy profile such that si ∈ BR(σi).
If we iteratively remove the NWBR, we obtain the set of Rationalizable Strategies.

Finally, we relate strict domination and NWBR in the case of games.

Proposition 6. Taken an game G = (S1, . . . , Sn, u1, . . . , un). If si ∈ Si is strictly
dominated, then it is NWBR.

Proof. Suppose si ∈ Si is strictly dominated. Then it exists a σi such that ui(σi, s−i) >
ui(si, s−i) ∀s−i ∈ S−i. This implies that, for any σ−i ∈ S−i:

ui(σi, σ−i) =∑
si∈Si

(∏
j ̸=i

σj(sj)
)
ui(σi, s−i) >∑

si∈Si

(∏
j ̸=i

σj(sj)
)
ui(si, s−i) =

ui(si, s−i)

Still, notice that the converse is true only in the case of 2 players. Then, if n = 2,
then any NWBR is strictly dominated.

But this is not true if n > 2. Indeed if si is not strictly dominated, then it exists a
q ∈ ∆(Ω) such that

∑
Ω q(ω)u(a, ω) ≥

∑
Ω q(ω)u(b, ω) ∀b ∈ A. Now, let’s Ω ≡ S−i. If

si is not strictly dominated then it exists a β ∈ ∆(S−i) such that
∑

S−i
β(s−i)u(si, s−i) ≥∑

§−i
β(s−i)u(s

′
i, s−i) ∀s′i.

However we cannot show that players’ actions come from independent randomiza-
tion. With more than 2 players, the set of rationalizable strategies is smaller than
×S∞

i .

2.4 Nash Equilibrium

There are games that are not solvable through dominance. Then we need a stronger
notion, namely that of Nash Equilibrium (NE).

To fully assess what NE is, we need first define the idea of "Best Reply Correspon-
dence".

Definition 2.3 (Best Reply Correspondence). Fix σ−i = (σ1, σ2, . . . , σi−1, σi+1, . . . , σn).
Then, we define BR(σ−i as:

BR(σ−i) = {si ∈ ∆(Si) : ui(σi, σ−i) ≥ ui(si, s−i) ∀si ∈ Si}

Notice that this is equivalent to say that σi ∈ BR(σi) if and only if ui(σi, σ−i) ≥
ui(σ

′
i, σ−i) ∀σ′

i ∈ ∆(Si) (where ui(σ
′
i, σ−i) =

∑
Si
σ′(si)ui(si, σ−i).)

15



Proposition 7. If σi ∈ BR(σi) then Supp(σi) ⊂ BR(σi)

Proof. Notice that we can write ui(σi, σ−i) as
∑

si∈Supp(σi)
σi(si)ui(si, s−i). By defini-

tion ui(σi, σ−i) ≤ maxsi∈Supp(σi) ui(si, σ−i). But since σi is a BR, then ui(σi, σ−i) ≥
maxsi∈Supp(σi) ui(si, σ−i). Then, ui(σi, σ−i) = maxsi∈Supp(σi) ui(si, σ−i).

Example 4: Battle of Sexes II

Let’s return to Battle of Sexes. This game has the following payoff matrix.

Alice | Bob Opera Football
Opera 3,1 0,0

Football 0,0 1,3

For each player we can define the following mixed strategies:

σA = (α, 1− α) and σB = (β, 1− β)

Where α, β ∈ [0, 1]. Let’s compute UA(Op, σB) and UA(Op, σB):

UA(Op, σB) = 3 · β + 0 · (1− β) = 3 · β
UA(F, σB) = 0 · β + 1 · (1− β) = 1− β

To find the BR of A to σB we must find that β for which UA(Op, σB) ≥ UA(F, σB):

3 · β ≥ 1− β =

β ≥ 1

4

Therefore we have:

BRA(σB) =


α = 1 if β > 1

4

α ∈ [0, 1] if β = 1
4

(A continuum of BR)
α = 0 if β < 1

4

This means that if β < 1
4
, it is always optimal for Alice to choose Opera. If β > 1

4
,

it is always optimal to choose Football. If β = 1
4

the BR is a continuum.
This can be represented in Figure 2:

2.4.1 Pure Strategies Nash Equilibrium

Definition 2.4 (Pure Strategies Nash Equilibrium). A strategy profile s∗ = (s1 . . . , sn)
is a Pure Strategy Nash Equilibrium if, ∀i,∀si ∈ Si

ui(s
∗
i , s

∗
−i) ≥ ui(si, s

∗
−i)

Or equivalently: s∗ is a Pure Strategy Nash Equilibrium if ∀i, s∗ ∈ BR(s∗−i).

16



α

β
1

1

1
4

α(β)

Figure 2: Best Reply Correspondence

This means that the NE is a strategy profile where everyone is best responding to
others. Simply put, there are no unilateral profitable deviations.

If we return to the Prisoner’s Dilemma (example 2, see above), for example, the
unique NE is (confess,confess), since any other outcome could provide each player a
profitable deviation. If 1 does not confess, 2 does not confess, but then 1 can confess.

In the Battle of Sexes, the Nash Equilibria are the outcomes where both the players
stay together, then (Opera,Opera) or (Football,Football).

Example 5: Cournot Duopoly (1838)

Two firms simultaneously choose quantities to produce (q1, q2) in order to maximize
their profits. This is a game theory problem because each firm must take into account
also what the other firm will do. Their strategies are S1 = S2 = R+. Both the firms
have the following Inverse Demand Function:

P (q1 + q2) =

{
a− (q1 + q2) if q1 + q2 ≤ a

0 otherwise

Each firm has the following cost function: C(qi) = c·qi (marginal costs are constant)
and c > a (indeed, if c > a, then the costs are greater than any possible a and it is
optimal to produce (0, 0)).

Finally, the payoffs of each firm are their profits:

π1(q1, q2) = P (q1 + q2) · q1 − c · q1 = [P (q1 + q2)− c] · q1

17



π2(q1, q2) = P (q1 + q2) · q2 − c · q2 = [P (q1 + q2)− c] · q2
We can write this problem in the following way:

q∗1 = argmax
q1∈[0,a)

[a− (q1 − q∗2)− c] · q1

q∗2 = argmax
q1∈[0,a)

[a− (q∗1 − q2)− c] · q2

Notice that, given what firm 1 produces, firm 2 produces the quantity that maxi-
mizes its profits (and vice-versa). Therefore to firm 1, q∗2 is a parameter (and vice-versa).

Taking the FOCs:

π′
1(q1, q

∗
2)|q1=q∗1

= a− 2q∗1 − q∗2 − c = 0

π′
2(q1, q

∗
2)|q2=q∗2

= a− q∗1 − 2q∗2 − c = 0

Then, solving the system: {
a− 2q∗1 − q∗2 − c = 0

a− q∗1 − 2q∗2 − c = 0

⇒ q∗1 = q∗2 =
a− c

3

This is the quantity produced by each firm in a non-cooperative setup.2

Example 6: Matching Pennies. A zero-sum game without Pure Strategies
NE

A famous class of games is that defined Zero-Sum Games (or Constant-Sum Games).
These are games of pure conflict, where what a player yields is exactly what the other
player loses.

An example is offered by "Matching Pennies" (or Head and Tail). Let’s see the
following matrix:

Player 1 | Player 2 Head Tail
Head -1,1 1,-1
Tail 1,-1 -,1

Looking for NE, if player 1 plays Head, player 2 plays Tail. If player 1 plays Tail,
the other plays Head. Then, there are no Pure Strategies NE. Let’s look for mixed
strategies.

If we take σ2 = (1
2
, 1
2
), and compute the utility for player 1:

2Notice that q∗1 + q∗2 > a cannot be a NE. Indeed, this implies that q∗1 > 0 or q∗2 > 0 or both. Take
q∗1 > 0. Then π1(q1, q1) = −cq∗1 < 0, which can be strictly improved upon by not producing. The same
holds for q2 > 0.
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u1(H, σ2) =
1

2
· −1 +

1

2
· 1 = 0

u2(T, σ2) =
1

2
· 1 + 1

2
· −1 = 0

The same for player 2 and σ1 = (1
2
, 1
2
). Therefore, there is a (mixed strategies) NE,

which is σ∗ = (σ∗
1, σ

∗
2).

2.4.2 Nash Equilibrium (general)

Now, we define the concept of NE of mixed strategies. Notice that the idea is the same;
namely, unilateral deviations are not optimal.

Definition 2.5 (Nash Equilibrium). A strategy profile σ∗ = (σ∗
1, σ

∗
2, . . . , σ

∗
n) is a NE

∀i and ∀si ∈ Si if:

ui(σ
∗
i , σ

∗
−i) ≥ ui(si, σ

∗
−i).

Equivalently: σ∗ is a NE if and only if for all i = 1, . . . , n, every si ∈ Supp(σ∗
i )

belongs to BRi(σ
∗
−i).

Equivalently: σ∗ is a NE if and only if for all i = 1, . . . , n:

ui(σ
∗
i , σ

∗
−i) = ui(si, σ

∗
−i) ∀si ∈ Si

ui(σ
∗
i , σ

∗
−i) ≥ ui(si, σ

∗
−i) ∀si ∈ Si − Supp(σ∗

i )

Then we can state this fundamental proposition.

Theorem 2.1 (Existence of Nash Equilibrium). If G = (S1, . . . , Sn, u1, . . . , un) is finite
(i.e., for any Si, it has finitely many actions), then a Nash Equilibrium (possibly in
Mixed Strategies) always exists.

Proof. (missing)

Notice that the finiteness of games is just a sufficient condition, not a necessary
one. Indeed games can have a NE even if they are not finite (an example is Cournot
Duopoly). Besides, this theorem just says that a NE equilibrium exists, not how many
or which type.

Example 7: Battle of Sexes III

Let’s go back to the Battle of Sexes.

Alice | Bob Opera Football
Opera 3,1 0,0

Football 0,0 1,3
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Above, we have found and graphed BRA(σB). Let’s now look for BRB(σA). Then:

uB(σA, Op) = α

uB(σA, F ) = 3− 3α

Then:

α ≥ 3− 3α

− 3 ≥ 4α

α ≥ 3

4

Therefore:

BRB(σA) =


β = 1 if α > 3

4

β ∈ [0, 1] if α = 3
4

β = 0 if α < 3
4

Graphically see Figure 3. The three points where BRA(σB) and BRB(σA) crosses
are all the NE (mixed and pure strategies) of this game (2 pure strategies NE, and one
mixed strategies NE).

α

β
1

1

1
4

3
4

(F,F)

(Op,Op)

σ∗ = (σ∗
A, σ

∗
B) = (1

4
, 3
4
)

Figure 3: NE in the Battle of Sexes
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2.4.3 Nash Equilibrium and the removal of dominated strategies

NE strategies survive the iterative removal of all strictly dominated strategies. Recall
that the outcome of IRSDS can be written as S∞

i =
⋂∞

k=0 S
k
i . Therefore, all the NE

⊆ S∞
i .
Furthermore, we can state the following result.

Theorem 2.2. Suppose σ∗ = (σ∗
1, . . . , σ

∗
n) is a NE. Then,∀i, ∀si ∈ Si such that

∈ Supp(σ∗):
Supp(σ∗) ⊆ S∞

i

Proof. The proof is by contradiction. Assume σ∗ = (σ∗
1, . . . , σ

∗
n) is a NE, but Supp(σ∗

j ⊆
S∞
j for some j. Then suppose also si ∈ S∞

i is the first action in Supp(σ∗
1)∪Supp(σ∗

2)∪
· · · ∪ Supp(σ∗

n) to be deleted in the process of IRSDS.
If S − i is deleted in round k, then Supp(σ∗

j ) ⊆ Sk−1
j for all j = 1, . . . , n. Si deleted

in round k means that it exists a σi ∈ ∆(Sk−1
i such that ui(σi, s−i) > ui(si, s−i) ∀s−i ∈

×Sk−1
j ̸=i .
This implies that:

ui(σi, s−i) > ui(si, s−i) ∀s−i ∈×
j ̸=i

Supp(σ∗
j )

Because Supp(σ∗
j ) ⊆ Sk−1

j . Then:∑
s−i∈Sj

(∏
j ̸=i

σ∗
j (sj)

)
ui(σ

′
i, s−i)︸ ︷︷ ︸

ui(σi, σ
∗
−i)

>
∑

s−i∈Sj

(∏
j ̸=i

σ∗
j (sj)

)
ui(si, s−i)︸ ︷︷ ︸

ui(σ
∗
i , σ

∗
−i)

Si is not a BR, so we have reached a contradiction.

Notice that this result is extremely useful since it allows to reduce the set of all
possible NE in the game, by just looking at those strategies that survive IRSDS. The
result above has a fundamental corollary.

Corollary 2.2.1. Suppose G = (S1, . . . , Sn, u1, . . . , un) is finite, and s∗ = (s∗1, . . . , s
∗
n)

is the unique strategy profile that survives IRSDS. Then s∗n is the unique NE.

Still, to apply this result, we have two limitations. First, we need strict domination;
second, we need finite games.

For an example of what happens in the case of Weak Domination, see the following
game:

Player 1 | Player 2 Left Right
Up 1,1 0,0

Down 0,0 0,0
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In this game we have two NE, (Down,Right) and (Up,Left). Notice also that
both Down and Right are weakly dominated.

In the case of pure strategies (and also in this case), we can define a Strict NE.

Definition 2.6. A Nash Equilibrium s∗ = (s∗1, . . . , s
∗
n) is strict if ∀i, ui(s

∗
i , s

∗
−i) >

ui(si, s
∗
−i) ∀si ∈ S∗

i

Besides, the following proposition links NE and the Iterated elimination of weakly
dominated strategies.

Proposition 8. Suppose G = (S1, . . . , Sn, u1, . . . , un) is finite, and S∗ = (S∗
1 , . . . , S

∗
n) is

the unique strategy profile that survives iterated deletion of weakly dominated strategies.
Then S∗

n is a NE.

Proof. The proof is by contradiction. Suppose S∗ is not a NE. Then, it exists i and si
such that ui(s

∗
i , s

∗
−i) < ui(si, s

∗
−i)(*). Notice that to be a not NE, it is sufficient that a

pure strategy is better).
But Si is deleted in some round k, so it exists σi ∈ ∆(Sk−1

i such that:

ui(σi, s−i) ≥ ui(si, s−i) ∀s−i ∈×
j ̸=i

Sk−1
j

This implies:

ui(σi, s
∗
−i) ≥ ui(si, s

∗
−i)

s∗−i survives to all eliminations. Then it exists s′i ∈ Sk−1
i such that ui(s

′
i, s

∗
−i) ≥

ui(si, s
∗
−i) (**).

Then we have:
ui(s

∗
i , s

∗
−i) < ui(s

′
i, s

∗
−i)

If s∗i = s′i, then we have reached a contradiction. If s′i ̸= s∗i , we continue. s′i is
deleted in some round k′ > k. This implies that it exists a σ′

i ∈ ∆(Sk−1
i such that

ui(σ
′
i, s−i) ≥ ui(s

′
i, s−i) ∀s−i ∈×j ̸=i

Sk−1
j . Then:

ui(σ
′
i, s

∗
−i) ≥ ui(si, s

∗
−i)(∗ ∗ ∗)

Then it exists si” ∈ Sk′−1
i such that: ui(si”, s

∗
−i) ≥ ui(s

′
i, s

∗
−i)(****). This implies

ui(s
∗
i , s

∗
−i) < ui(si”, s

∗
−i).

If s∗i = si”, we have reached a contradiction. Otherwise, let’s continue with another
round. Still, since the game is finite, a contradiction will be reached at a certain point.
This completes the proof.

Example 8: All Pay Auction

(Missing: see notes)
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Example 9: Hotelling’s Model

This is a model that shows the idea of Spatial Competition. Players compete in choosing
a location in a segment between extremes [0, 1] (we assume that there is a continuum
of consumers). There are two sellers, many consumers, and each buys only one unit
of goods from the sellers (the goods are the same, and their price is normalized to 1).
Each consumer buys from the closest seller. Let’s find all the pure NE of the game.

The setups of the model are the following: the strategy space Sj is [0, 1]. The payoff
for each vendor coincides with their profits, and, therefore, with the location they chose:

ui(si, sj) =


si+sj

2
if si < sj

1
2

if si = sj

1− si+sj
2

if si > sj

We can see that choosing a location different from that of the other vendor is not a
NE. Indeed each can find a profitable deviation.

ui(si, sj) =
si + sj

2
<

si + ϵ+ sj
2

= ui(s
′
i, sj)

Thus, in a NE, both players must choose the same location. Still, this is not suf-
ficient. Indeed assume they pick the same location in a random point between [0, 1]
different from the median point. Then, each has the incentive to deviate. By moving
slightly toward the center, he can obtain more than 1

2
. Then, the unique NE is the

strategy where both the sellers chose the same location, and this coincides with the
median point.

Indeed, in this case:

ui

(
s1 =

1

2
, sj =

1

2

)
=

1

2
>

s′i +
1
2

2
= ui

(
s′i, sj =

1

2

)
where s′i <

1

2

ui

(
s1 =

1

2
, sj =

1

2

)
=

1

2
> 1−

s′i +
1
2

2
= ui

(
s′i, sj =

1

2

)
where s′i >

1

2

Still, notice that this is not true anymore in the case of three vendors. Here we have
three cases.

First, each can choose a different location, say s1 < s2 < s3. Each player has the
incentive to deviate. For instance, s1 can choose a strategy closer to s2.

Second, two players pick the same location, and the third one does not. Say s1 =
s2 = s < s3. In this case, s3 can pick any location closer to s1 = s2 (that is, comprised
in the interval (s3, s) if s3 > s and in the interval (s, s3) if s3 < s.

The third case is that of all players picking the same location s. In this case, each
gets 1

3
. Assume s is not the median point. Then, player 1 can choose the median point,

assuring a payoff greater than 1
2
> 1

3
. Suppose, instead, that s is the median point.

Still, each player, say 1, has the incentive to deviate.
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2.4.4 Example 10: The problem of the Commons

The main idea is that, if players respond to private incentives only, then public goods
will be underprovided and public resources overutilized.

Consider a village with n farmers. Each farmer has some goats, where the number
of goats of farmer i is denoted by gi and therefore, the total number of goats is G =
g1 + · · · + gn. Each farmer gets a revenue depending on the total number of goats in
the field (i.e., more goats in the field, less grass for each goat). This can be written as:

v(G) =

{
v(G) > 0 if G < Gmax

0 if G > Gmax

The basic idea is simple. There is a max number of goats that can eat the grass.
Once reached that number, the value of taking a goat to the field is 0. Furthermore,
the revenue function is concave and decreasing (i.e., v′(G) < 0 and v”(G) < 0). Finally,
each goat generates a positive cost for the farmer.

The payoff function can be written as:

ui(gi, g−i) = v(G) · gi − c · gi

The set of strategies is Si = [0, Gmax] for all i = 1, . . . , n. Indeed, playing gi > Gmax

is always dominated by playing 0 (in simple words, bringing a goat in the field when
the max number has been reached is always dominated by not bringing a goat).

For each farmer the problem is that of maximizing her payoff. Then:

max
qi

v(G) · gi − c · gi

The FOC of the i-th farmer is:

v(g∗1 + · · ·+ g∗i + · · ·+ g∗n) + gi · v′(g∗1 + . . . g∗i + · · ·+ g∗n)− c = 0

This can be written as:

v(G∗) + g∗i v
′(G∗)− c = 0

Multiply by n:

n · v(G∗) + n · g∗i︸ ︷︷ ︸
G∗

v′(G∗)− n · c = 0

Divide by n:

v(G∗) +
G∗

n
v′(G∗)− c = 0

This is the optimal output for each player.
Let’s now suppose that there is a Benevolent Planner. He is called to choose the G

that solves the following problem:
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max
0<G<∞

v(G) ·G− c ·G

Taking the FOC (and denoting as G̃ the G that solves the FOC):

G̃ · v′(G̃) + v(G̃)− c = 0

The interesting problem is now that of determining which one is bigger: G̃ or G∗?
We want to show that G̃ < G∗. Let’s rewrite the two optimal, that of individuals

and the collective one) as:

v(G∗) +
G∗

n
v′(G∗) = c

G̃ · v′(G̃) + v(G̃) = c

Then:
v(G∗) +

G∗

n
v′(G∗) = G̃ · v′(G̃) + v(G̃) = c

Assume (by contradiction) that: G̃ ≥ G∗. This implies that G̃ > G∗

n
(*). Then, since

the revenue function is decreasing:

v(G∗) ≥ v(G̃)(∗∗)
Furthermore, since the revenue function is strictly concave:

0 > v′(G∗) > v′(G̃)(∗ ∗ ∗)
From (*) and (***), we have:

v′(G∗)
G∗

n
> v′(G̃) · G̃

From (**)

v(G∗) + v′(G∗)
G∗

n︸ ︷︷ ︸
= c from the FOC

> v(G̃+ v′(G̃) · G̃︸ ︷︷ ︸
= c from the FOC

Since we have c > c, we have reached a contradiction. Therefore G∗ > G̃.
This means that the NE equilibrium of this non-cooperative game is greater than

the social optimum.
How to interpret this result? The economic intuition is that the common resource

is over-utilized. Indeed, from the FOC, for each player we can write:

v(G∗) +
G∗

n
v′(G∗)− c = 0

Then the Marginal Revenues is v(G∗), and the Marginal Costs is c − v′(G∗) · G∗

n
.

This is greater than zero (since v′(G∗) is greater than zero). So the overall quantity is
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positive. Notice that The marginal cost is less than the marginal cost for society, since,
in the latter case, this is c−v′(G̃)·G̃. Therefore, bringing an extra goat produces greater
damage to society than to a single farmer. This is a problem of Negative Externality.
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3 Games in Strategic Form with Incomplete Informa-
tion: Bayesian Games

In a game with complete information, the players’ payoffs are Common Knowledge. In
games of incomplete information, instead, at least one player is uncertain about the
other’s payoff functions. These games have been studied extensively by John Harsanyi
in the 1960s. He came up with the following idea: players have been endowed with
different types, chosen randomly by nature. An example is the following: assume that
one can like chocolate or strawberries. Then, in this framework, there exist two different
types, say, that who likes chocolate and that who does like strawberries.

3.1 Fundamentals

Before presenting the fundamentals of these games, notice that they are common knowl-
edge. Uncertainty is only about the payoffs.

The setup of these games is the following. We have n-players i = 1, . . . , n. Asso-
ciated to each player is the Set of types of the player, Ti. Each type ti belongs to this
set. The Set of type profiles is:

T =
n×

i=1

Ti

Each t = (t1, . . . , tn) belongs to T . We can also write T−i =×n

i ̸=j
Tj. Then t−i =

(t1, . . . , ti−1, ti+1, . . . , tn) belongs to T−i. We can write, for simplicity, t = (ti, t−i).
We also define the Set of Actions for player i, as Ai. And the set of all actions as:

×n

i=1
Ai and A−i =×j ̸=i

Aj is the set of actions of all opponents to player i.
The Payoff Function is:

ui : A× T −→ R

Finally, we can also define a probability distribution over the different types, p ∈
∆(T ) (this is called Common Prior).

Therefore, we can define a Games in Strategic Form with Incomplete Informaton
(or Bayesian Games as follows:

Γ = (T1, . . . , Tn, p, A1, . . . , An, u1, . . . , un)

We can now outline the timing of a static Bayesian Game as originally proposed by
Harsanyi.

• Nature chooses a type profile for each player, t = (t1, . . . , tn) according to proba-
bility p.

• Each player i learns upon ti
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• The players choose their actions simultaneously

• payoffs are received

Since each player knows only her type, the types of others are private information.
Notice that the case of games with complete information can be interpreted as a special
case of Bayesian Games, namely where Ti is a singleton.

Let’s see an example with n = 2. Each player has the following set of actions:

A1 = {U,D} and A2 = {L,R}

And the following set of types:

T1 = {t̃1, t̂1} and T2 = {t̃2, t̂2}

The probability distributions for each possible case can be:

p(t̃1, t̃2) =
3

10

p(t̂1, t̂2) =
4

10

p(t̃1, t̂2) =
2

10

p(t̂1, t̂2) =
1

10

Each of the four combinations above can be associated with a game matrix. Still,
note that these are all part of the same game.

Each player knows her type and must guess the type of the opponent. Namely, if
player 1 is of type t̃1, what is the probability that 2 be of type t̃2? This can be written
as:

p(t̃2|t̃1) =
p(t̃1, t̃2)

p(t̃1, t̃2) + p(t̃1, t̂2)︸ ︷︷ ︸
p(t̃), the Marginal probability of ti

=
3
10

3
10

+ 2
10

=
3

5

Or, more in general:

p(t−i|ti) =
p(t−i, ti)

p(ti)

Where the Marginal Probability of i is: p(ti) =
∑

t−i∈T−i
p(t−i, ti). Assuming that

the probabilities are independent, p(t1, . . . , tn) can be written as
∏n

i=1 p(ti).
Therefore, we can also write:

p(t−i|ti) =
∏n

i=1 p(ti)∑
t−i∈Ti

p(t−i, ti)
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3.2 Pure Strategies and Mixed Strategies

3.2.1 Pure Strategies

Different types do different things. Pure strategies specify an action for any type. This
can also be seen as a contingent plan of action for any type, given that each player
knows her type. It is a mapping from types to actions and can be written as:

si : Ti −→ Ai

Let’s see an example. T1 = {t̃1, t̂1} is the set of types for player 1 and A1 = {U,D}
is the set of actions. We can define the following pure strategies:

s1(t̃1) = U

s1(t̂1) = D

s1(t̃1) = s1(t̂1) = U

s1(t̃1) = D

s1(t̂1) = U

s1(t̃1) = s1(t̂1) = D

Si is Set of all pure strategies. The cardinality of Si is given by |Ai||Ti|, the number
of pure strategies raised to the number of possible types.

3.2.2 Mixed Strategies

Mixed strategies can be defined in two different but equivalent, ways.

1. If Si is the set of pure strategies, we can randomize over this set. Then, σi ∈
Delta(Si). In the example above we have four pure strategies:

Si = {(U,U), (U,D), (D,U), (D,D)}

Then we can have the following mixed strategies: σ1(U,U) = 0.4, σ1(U,D) = 0.3,
σ1(D,U) = 0.2, σ1(D,D) = 0.1.

2. For each type we randomize. Namely we construct a function:

β : Ti −→ ∆(Ai)

β is called Behavioral Function. Then we can have:

Notice that (1) and (2) are different mathematical objects. But still, they are
equivalent.
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t̃1

U

D

0.7

0.3

t̂1

U

D

0.6

0.4

Figure 4: Behavioral Strategies

3.3 Bayesian Nash Equilibrium

Suppose that there is a set of actions a = (a1, . . . , an) and of types t = (t1, . . . , tn).
Player j randomizes and choose aj with probability αj(aj). Therefore, we can write the
expected payoff from this randomization as:

ui(α1, . . . , αn, t1, . . . , tn) =
∑

α1,...,αn

(
n∏

j=1

αj(aJ)

)
ui(a, t)

Now we can define dominance in Bayesian Games.

Definition 3.1. A mixed strategy σ is stictlu dominated if it exists a ti ∈ Ti and
αi ∈ ∆(Ai) such that:∑

t−i

p(t−i|ti)u
(
s1(t1), . . . , si−1(ti−1), αj, si+1(ti+1, . . . , sn(tn), t−i, ti)

)
>

∑
t−i

p(t−i|ti)u
(
s1(t1), . . . , si−1(ti−1), βi(t1), si+1(ti+1), . . . , sn(tn), t−i, ti)

)
For all pure strategy profile (s1, . . . , si−1, si+1, . . . , sn), when sj : Tj −→ Aj.

This definition can be extended to the case of weak domination when ≥ and at least
one strict inequality.

Now, we can also define the Bayesian Nash Equilibrium (BNE):

Definition 3.2. Behavioral strategies (β∗
1 , . . . , β

∗
n), where βj : Tj −→ ∆(Aj) is a

Bayesian Nash Equilibrium if, ∀i = 1 . . . , n,∀ti ∈ Ti and ∀ai ∈ Ai:∑
t−i

p(t−i|ti)ui

(
β1(t1), . . . , βi−1(ti−1), βi(ti), βi+1(ti+1), . . . , βn(tn), t−i, ti

)
≥

∑
t−i

p(t−i|ti)ui

(
β1(t1), . . . , βi−1(ti−1), αi, βi+1(ti+1), . . . , βn(tn), t−i, ti

)
Notice that p(t−i|ti) = p(t−i,ti)

p(ti)
. Therefore, by multiplying both sides by p(ti), we

can write the definition above in terms of Joint Probabilities and not conditional prob-
abilities without change.
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Example 11: Cournot with Private Information

Two firms face the problem of setting the quantity to produce in order to maximize
their profits. We can write the inverse demand function as:

P (q1 + q2) =

{
a− (q1 + q2) if q1 + q2 ≤ a

0 otherwise

But now, firm 2 has private information about its costs. Then the cost functions
for each firm are:

c1(q1) = c · q1 c > 0

and

c2(q2) = cH · q2 with probability θ

c2(q2) = cL · q2 with probability 1− θ

with 0 < cH < cL and θ ∈ [0, 1]. The set of types, for each firm, are the following:
T1 = {t1} (since firm 1 has one type only) and T2 = {tL, tH}. Then we have:

p(t1, tH) = θ and p(t1, tL) = 1− θ

The payoff functions for each firm are the following. Starting with Firm 1:

π1(q1, q2, t1, tL) = π(q1, q2, t1, tH) = (P (q1 + q2)− c) · q1
Notice that the two functions for tH and tL are equal because the type of the

opponent does not directly affect the payoff of Firm 1.
Let’s see now for Firm 2. In this case, we have two different payoff functions,

depending if the firm is of type tH or tL.

π2(q1, q2, t1, tL) = (P (q1 + q2)− cL) · q2

π2(q1, q2, t1, tH) = (P (q1 + q2)− cH) · q2
Looking for Pure Strategies BNE, we need to specify the strategies for players 1 and

2. For player 1, it is one number q∗1. For player 2 are two numbers (q∗L, q
∗
H).

q∗1 = argmax
q1∈[0,a)

θ[a− q1 − q∗H − c] · q1 + (1− θ)[a− q1 − q∗L − c] · q1

q∗L = argmax
q2∈[0,a)

(a− q∗1 − q2 − cL) · q2

q∗H = argmax
q2∈[0,a)

(a− q∗1 − q2 − cL) · q2
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Taking the FOCs, and solving the system of three equations and three unknowns,
we have: 

θ(a− 2q∗1 − q∗H − c) + 1− θ(a− 2q∗1 − q∗L − c) = 0

a− q∗1 − 2q∗H − cH = 0

a− q∗1 − 2q∗L − cL = 0

And 
q∗1 = a−2c−θcH+(1−θ)cL

3
≥ 0

q∗L = a−2cL+c
3

− θ
6
(cH − cL) ≥ 0

q∗H = a−2cH+c
3

− (1−θ)
6

(cH − cL) ≥ 0

Notice that q∗L = q∗H + 1
2
(cH − cL) > q∗H .

Since all qi are greater than zero, and all prices are greater than zero, the system
above is the Bayesian Nash Equilibrium of the game.

Example 12: Battle of Sexes IV

Let’s return to the Battle of Sexes, seen previously. Recall that the mixed strategy NE
was: σ∗

A = (3
4
, 1
4
) and σ∗

B = (1
4
, 3
4
). Suppose now that, for some shock, both Alice’s and

Bob’s payoffs change, such that the new Payoff Matrix is the following:

Alice | Bob Opera Football
Opera 3 + tA ,1 0,0

Football 0,0 1, 3 + tB

This change is Private Information. Furthermore, we assume that tA and tB are
independent draws from a uniform distribution [0, x]. For all y ∈ [0, x] then P (tA ≤
y) = P (tB ≤ y) = y

x
.

The set-up of the game are n = 2 (the number of players). The sets of actions are
AA = AB = {Op, F}. The sets of types are TA = TB = [0, x].

Let’s find the pure strategies BNE. First, notice that each player’s strategy can be
written as follows:

sA : [0, x] −→ {Op, F}

sB : [0, x] −→ {Op, F}

Fix sB, the idea is that Alice goes to Opera if tA exceeds a certain value, say t̃A.
And the same does Bob with t̃B. So that we can write:

S∗
A(tA) =

{
Op if tA ≤ t̃A

F if tA > t̃A

and
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S∗
B(tB) =

{
Op if tB ≤ t̃B

F if tB > t̃B

Let’s find t̃A and t̃B. When tA = t̃A, Alice is indifferent between Opera and Football.
Then we can write:

t̃B
x
(3 + t̃A) = 1− t̃B

x

This is Alice’s expected payoff when her type is t̃A, and Bob plays Opera. For Bob,
when tB = t̃B we write:

t̃A
x
(3 + t̃B) = 1− t̃A

x
.

t̃A and t̃B must satisfy the following system (multiplying each equation above by x).{
3t̃B + t̃B · t̃A = x− t̃B

3t̃A + t̃B · t̃A = x− t̃A{
4t̃B = x− t̃B · t̃A
4t̃A = x− t̃B · t̃A

Since t̃A = t̃B, we can write:

4t̃A = x− (t̃A)
2

= t̃A =
−4 +

√
16 + 4x

2

Where t̃A = t̃B ∈ [0, x].
The probability that each player plays his favorite strategy, p(A plays Op) and

p(B plays F), is 1− t̃A
x

, namely:

1− −4 +
√
16 + 4x

2x

To conclude, let’s notice an important result established originally by Harsanyi. As
x → 0, we obtain 0

0
. Therefore, by applying the Rule of de l’Hopital3 we obtain 1

4
.

Therefore, as x → 0, we have:

3This rule assume that if limx→c
f(x)
g(x) = 0

0 or ±∞
∞ , and g′(x) ̸= 0, then we can write:

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
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1− 1

4
=

3

4

This is exactly the mixed strategy NE in the original game of complete information
(Harsanyi’s Purification).

Example 13: First Price Auction with Independent Private Values

In this auction, players submit bids, and the player with the highest bid wins and pays
his bid. Independent refers to the distribution of types. Private refers to a property of
the payoffs, namely vi depends on ti and not on t−i.

The setup of the model is the following. There are n−players. Ai = R+ and
Ti = [0, v]. vi ∈ [0, v] is i’s type. Types are identically independently distributed.
The distribution of types is indicated by a cumulative distribution function F (.), where
f(0) = 0 and F (v) = 1. Then, ∀ṽ ∈ [0, v] we can write p(vi ≤ ṽ) = F (ṽ).

We can write each player’s payoff function as:

ui(b1, . . . , bn, v1, . . . , vn) =


vi − bi if bi > bj for i ̸= j
vi−bi
k+1

if i ties with k opponents
0 if bj > bi for j ̸= i

Let’s construct a symmetric pure strategy Bayesian Nash Equilibrium. Symmetric
refers to the fact that all players have the same strategies and the same payoffs.

We can denote each player’s strategy as:

gi : [0, v] −→ R+

Intuitively we can assume that this function is strictly increasing (that is, if v1 > v2,
then g(v1) > g(v2)) and continuous. Still, notice that we need to show that such a
function exists and has these features.

First notice that g(vi) ≤ vi. Indeed, the function g(.) must remain below the 45
line. To see this, assume it is not. Then, we have g(ṽ) > ṽ. If we write (F (ṽ))n−1 · (ṽ),
this is less than zero (indeed, the first term, p(vi ≤ ṽ) is positive, the second term is
negative). But then this is dominated by bidding zero, then g(.) cannot be a NE.

We still do not know if g(.) is continuous and strictly increasing. To see this, let’s
continue to construct g(.).

Assume all the opponents play g(.). Then ∀vi ∈ [0, v] the optimal bid is g(vi).4
Suppose you choose bi. Then the expected payoff is:

F (g−1(bi))
n−1 · (vi − bi)

And since the optimal bid is g(vi) we can write:
4Notice from figure 5 that any bid superior to g(v) cannot be optimal, since it is always possible to

bid less and still win.
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g(v)

vi

g(vi)

bi

g−1(bi)

Figure 5: A graphical representation of g(.)

argmax
bi∈[0,v]

F (g−1(bi))
n−1 · (vi − bi) = g(vi) (∗)

Then we must find the function that solves (∗) for every vi.
First assume, for the sake of simplicity, that bi = g(wi) and wi = g−1(bi). Therefore,

we can write:

vi = argmax
wi∈[0,v]

F (wi)
n−1 · (vi − q(wi))

Taking the FOC with respect to wi, we obtain:

(n− 1)F (vi)
n−2F ′(v)(vi − g(vi))− g′(vi)F (vi)

n−1 = 0 (∗∗)

This is a differential equation. Assuming, for simplicity, that F (vi) =
vi
v

and g(vi) =
αvi with α > 0. Then we can rewrite the equation above as:

(n− 1)
(vi
v

)n−2 1

v

(
vi − αvi

)
− α

(vi
v

)n−1

= 0

The solution is:
α =

n− 1

n

Therefore, the Bayesian Nash Equilibrium is n−1
n

· vi. Notice that as n increases,
then n− 1 increases. So, with more opponents, each player bids more aggressively.
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Appendix: General Solution

In general the solution for (∗∗) is:

1

F (vi)n−1

∫ vi

0

x(n− 1)F (x)n−2F ′(x)dx =

= vi −
1

F (vi)n−i

∫ vi

0

F (x)n−1dx

≡ g(vi)

The second equation is obtained through integration by parts.5 This function is
continuous and strictly increasing. Furthermore, checking the SOC, it reaches a maxi-
mum.

5Recap of Integration by Parts: Recall that (f(x) · g(x))′ = f ′(x) · g(x) + f(x) · g′(x). Taking the
integral of each term, we have:∫

(f(x) · g(x))′ =
∫

f ′(x) · g(x) +
∫

f(x) · g(x)′

Rearranging, we have:

f(x) · g(x) =
∫

f ′(x) · g(x) +
∫

f(x) · g′(x) =∫
f ′(x) · g(x) = f(x) · g(x)−

∫
f(x) · g′(x)
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4 Games in Extensive Form: Dynamic Games
So far, we have analyzed only situations where players move simultaneously. The only
difference was about the amount of available information (common knowledge or private
information). Let’s see now another category of games, those that involve a sequential
situation. Namely, one player moves first, and the second moves later.

Let’s start with an example. In this game, there are two players, i.e., two firms
that compete for a market. One firm is incumbent, and the second must decide if
enter the market or not. If the second firm stays out, its payoff is zero. If enters,
the incumbent can choose two options: to accommodate, and therefore both the firms
share the market, or to fight. In this case, the entrant receives a negative payoff. Such
a situation can be represented in the following tree form.

Entrant

Incumbent

1, 1

Accomodate

−3,−1

Fight

In

0, 2

Out

Figure 6: An entry game in extensive form

The game above can be represented in the following Normal Form:

Ent | Inc Fight Acc
In -3,-1 1,1

Out 0,2 0,2

Therefore, we see that there are two pure strategies NE: (In, Acc) and (Out,
Fight). However, for player 2 Fight is weakly dominated. Besides, looking at the
payoffs, Fight is a non-credible threat. This is a characteristic of the game that is not
captured in the normal form, but requires that the game is modeled as a sequence of
moves.

4.1 Fundamentals

The fundamental feature of Extensive form games is that they can be represented as
game trees. We define Y as the set of all the nodes of the tree.X is the set of decision
nodes, and Z is the set of terminal nodes. Therefore we have X∩Z ̸= 0 and X∪Z = Y .
On Y , we introduce a binary relation, qi, also called Immediate Procedure Relation.
Then we can write y1 q y2, i.e., the node y1 is an immediate predecessor of the node y2.
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Therefore, the tree in Figure 7 can be described as follows:

y1 q y2, y2 q y3, y3 q y4, y4 q y5.

We say that y0 is a predecessor of yk if there exist y1, . . . , yk−1 such that:

y0 q y1 q y2 . . . q q yk

Therefore we say that yk is a successor of y0. If y ∈ Z then we say that y is a terminal
node (namely, it has no successors). We say that y is an initial node if it has no
predecessors.

The relation q rules out both the possibility that one node is the successor of two
different nodes; furthermore also the possibility of cycles.

y1

y3

y4 y5

y2

Figure 7: A graphical representation of the relation q

Then, we can define a tree as (Y, q). We can outline some properties of a game tree.

• There exists only one initial node

• Every node different from the initial node has a unique immediate predecessor

• For all y, the predecessors of y are completely ordered (i.e., there are no cycles

We define N = {0, 1, . . . , N} as the set of players (where 0 define the "nature". X
is the set of decision nodes, then we define ϕ as the set of moving players, namely:
ϕ : X −→ {0, 1, . . . , N}. The set of actions available to players ϕ(x) at nodes x is
denoted by A(x).

For each player i we can define a payoff function ui : Z −→ R. The set of probability
distributions of terminal nodes is ∆(Z). For every π ∈ ∆(Z) we can define formally a
payoff function as:

ui(π) =
∑
z∈Z

π(z)ui(z)

A fundamental notion related to Extensive Form Games is that concerning the
information available to different players.

To describe formally this idea, we must introduce the notion of Partition.
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Definition 4.1 (Partition). Take a set X. A collection X1, . . . , Xn of subsets of X is
a partition of X if and only if:

• X1 ∪X2 . . . Xn = X;

• Xi ∩Xj = ∅ for all i ̸= j.

To describe what each player knows in the game, we introduce the partition of the
decision nodes, h1, . . . , hk. Each hj ⊆ X. Each hj is called an information set. We also
define the set of the information sets, namely H = {h1, h2 . . . , hk}, with hi ∩ hj = ∅.
Every hj is a collection of nodes. For all hi ∈ H, and for all x, x′ ∈ hi we say:

1. x is not a predecessor of x′ (and x′ is not a predecessor of x)

2. ϕ(x) = ϕ(x′) and A(x) = A(x′): each player knows at which node he is.

ϕ(hi) are the players at the information set hi. A(hi) are the actions at the infor-
mation set hi.

Let’s see the following tree as an example:

1

2

a

2

b

2

c

Figure 8: Information Sets

If player 1 chooses c, then player 2 knows that. Instead, if player 1 chooses a or b,
player 2 cannot distinguish between these two choices. Graphically, the information set
of each player is represented by a dashed line connecting several decision nodes in the
tree.

Notice that we can represent a Normal Form Game in tree form (see Figure 9).
Since players move simultaneously in Static Games, we can assume that Player 2 is
uncertain about the moves of Player 1. Namely, her information set contains two
nodes. Therefore, Games in extensive form are the most general way of representing
and solving games.

We can also represent Bayesian Games in Extensive form. First, notice that we can
model a decision in the following tree form (Figure 10). Assuming, without loss, that
nature moves only at the initial node, we can represent this decision as the game in
Figure 11.
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1

2

a

2

b

Figure 9: A Tree representation of a Normal Form Games

1

0

7

Good .7

1

Bad .3

Risky Action

3

Safe Action

Figure 10: A Decision Tree

More in general, we can represent a Bayesian Game in extensive form, as in Figure
12.

The set of types for each playeri is Ti = {t̃i, t̂i}, the set of actions for player 1 is
A1 = [A,B], for player 2 is A2 = [a, b]. Player 1 knows her type but is uncertain about
the type of the opponent (this is represented by the information set of 1). Player 2
knows her type but not the type of 1.

In general, we can define an extensive-form game as:

Γ = (X,Z, q,N, ϕ,A,H, p, ui, . . . , un)

Γ is finite if the set Z is finite, i.e., if there are finitely many terminal nodes. Γ
has finite horizon if, for all z ∈ Z, the complete path is finite, namely if we reach any
terminal nodes after a finite number of steps). Any finite game has a finite horizon, but
the contrary is not always true.

If any information set is a singleton, then this is a game with Perfect Information
(the simplest example is Chess). On the contrary, games have Imperfect Information.

Furthermore, we can also define games with Incomplete or Complete Information.
In the game with Complete Information, players start the game with the same private
information. All the games with Incomplete Information are also games with Imperfect
Information (the contrary is not true. Games with or Imperfect Information are also
games with Complete Information.
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0

1

1

R

3

S

Good.4

1

7

R

3

S

Bad.7

Figure 11: A decision as an extensive form game where Nature moves first

O

1

2

a b

A

a b

B

t̃1, t̃2

1

a b

A

a b

B

t̃1, t̂2
1

a b

A

a b

B

t̂1, t̃2
1

a b

A

2

a b

B

t̂1, t̂2

Figure 12: A Bayesian Game in Extensive Form

A final category of games is that of games with Imperfect Recall. These are games
where players forget about their previous moves. A tree for games of this kind is
represented in Figure 13. Here player 1’s information set comprises nodes from different
choices of player 2.

A formal definition of games with Perfect Recall is the following.

Definition 4.2. If x and x′ belong to the same information set, and if x̂ is a predecessor
of x and ϕ(x̂) = ϕ(x), then there exists a decision node x̃ (possibly x̂ itself) such that x̂
and x̃ belong to the same information set, x̂ is a predecessor of x′, and the action taken
at x̂ along the path to x coincides with the action taken at x̃ along the path to x′.

Let’s see now the idea of Strategies in games of extensive form.
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1

2

1 1

2

1 1

Figure 13: A game with imperfect recall

4.2 Pure and Mixed Strategies

4.2.1 Pure Strategies

Let’s start with pure strategies. A pure strategy of player i is an action a ∈ A(h) to
every information set h with ϕ(h) = i. Formally we can write:

si : h ∈ Hi −→ a ∈ A(h)

Where Hi is the set of information sets of player i. This means that if x, x′ belong
to the same information set, we cannot say that at node x, player 1 plays a certain
strategy, say A, and at x′, he plays another strategy, say B.

We can define the set of pure strategies as:∏
h∈Hi

|A(h)|

Suppose a game as the following:

B R b

tLT1 12

Then, player 1’s pure strategies are ((Bt),(Tb),(Tt),(Bb)). Specifying (Bt) and (Bb)
is necessary to determine if player 2’s response is optimal.

4.2.2 Mixed Strategies

We can think of mixed strategies in two types:
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1. List all the pure strategies and then randomize. Specify a probability for each
pure strategy. Assume a player with two information sets h, h′ and action sets:

A(h) = {a, b, c, d} and A(h′) = {1, 2, 3}

Then there are 11 (i.e. [A(h)×A(h′)]− 1) mixed strategies:

Si = {a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2}

2. Behavioral strategies:

β : h ∈ Hi −→ βi(h) ∈ ∆(A(h))

For every information set, you choose how to randomize. Then you have 5 possible
mixed strategies.

Let’s see an example.
Assume for player 1 four possible strategies, with the following probabilities: (Aa),σ1 =

.72; (Ab),σ1 = .08; (Ba),σ1 = .18; (Bb),σ1 = .02). Assume also the following behavioral
strategies:.

A = .8, B = .2, a = .9, a = .1

Assume that player 2 plays R. Mixed strategies are: at terminal node z1: 0.2 (Ba
+ Bb); at terminal node z2: (.8) (Aa + Ab); at terminal nodes z3 and z4: 0 Behavioral
strategies are: 0.2 and 0.8 at z1 and z2.

Assume that player 2 plays L. Mixed strategies are: at terminal node z1: 0.2; at
terminal node z3: (.08); at terminal nodes z4: (.72), and z2: 0 Behavioral strategies are:
.3, .08 and .72 at z1, z3 and z4.

Proposition 9. A strategy σi (mixed or behavioral) is equivalent to another strategy τi
(mixed or behavioral), if and only if ∀z ∈ Z and s−i ∈ S−i:

O(z|σi, s−i) = O(z|τi, s−i)

O ∈ ∆(Z) (where O indicates the probability of an outcome).

Proof. (Proof is missing)

Then, for every behavioral strategy βi, it exists an equivalent mixed strategy σi.
Indeed, ∀si, si : h ∈ Hi −→ Oi ∈ A(h) we can write σi(Si) =

∏
h∈Hi

βi(si(h)|h) for all
si ∈ Si. The opposite is not always true. Let’s see that with an example.

Player 1’s strategies are ((Aa),(Ab),(Ba),(Bb)). Let’s take mixed strategies σ1 =
(1
2
, 0, 0, 1

2
). βi(h) ∈ ∆({A,B}) and βi(h

′) ∈ ∆({a, b}). β1(a|h′) > 0 and β1(B|h) > 0.
But then z3 is reached with strictly positive probability. Then it is true that for any
mixed strategy, it can be found a behavioral strategy.

Theorem 4.1 (Kuhn Theorem). If a game has perfect recall, for all mixed strategies
σi ∈ ∆(Si), then exists an equivalent behavioral strategy.
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1h

2h′

z1

b

z2

a

B

2

z3

a

z4

b

A

1

2

z1

t

z2

b

T

z3

B

Proof. (Proof is missing)

We can reach the outcome z1 with mixed strategy σ1(Tt). The outcome z2 with
σ1(Tb) and z3 with σ1(Bt) + σ1(Bb).

Take σ1(Tt) + σ1(Tb) > 0. Then we can write:

• β1(t|h′) = σ1(Tt)
σ1(Tt)+σ1(Tb)

• β1(b|h′) = σ1(Tb)
σ1(Tt)+σ1(Tt)

• β1(T |h) = σ1(Bt) + σ1(Bb)

• β1(B|h) = σ1(Bt) + σ1(Bb)

Take σ1(Tt) + σ1(Tb) = 0. Then we can write:

• β1(t|h′) = x ∈ [0, 1]

• β1(T |h) = 1

• β1(B|h) = 0

Then, from the outcome O ∈ ∆(Z), we can write u1(σ) as π ∈ ∆(Z) and ui(π) =∑
z∈Z π(z)ui(z).
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4.3 Nash Equilibrium

Let’s define now NE for games in extensive form

Definition 4.3. σ is a Nash Equilibrium if ∀i and ∀si
ui(σ

∗
i , σ

∗
−1) ≥ ui(s1, σ

∗
−i)

At the beginning of the game, each player computes the expected utility and looks
for it to be optimal. But NE is not a sufficient solution for extensive form games. We
can see it through an example.

Example 14: an entry game

Let’s recall the entry game seen at the very beginning of this section. An entrant must
choose if enter into a market with an incumbent. If it does, a price war arises. The tree
is represented in the figure.

E

I

2, 2

A

1,−1

F

In

0, 3

Out

Figure 14: An entry game

In this game, there are two Pure Strategies NE: (Out, F) and (In, A). If the entrant
plays out, the incumbent gets a payoff equal to 3, no matter what. Instead, the payoff
for the entrant can be written as:

− 1(σI(F )) + 2(1− σI(F )) ≥ 0

σI(F ) ≥ 2

3
.

So a Mixed Strategy NE is ((Out),σI(F )), where σI(F ) ≥ 2
3
. But this NE is based

on a Non-credible threat.

4.4 Backward Induction

If games are finite6 and have perfect information (i.e., games where every information
set is a singleton), we can use a technique called Backward Induction. Therefore we can
find a Backward Induction Solution.

6To be most precise, the game must have finite horizon. For the differences between games with
finite horizon and finite games see above
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Let’s analyze the game in tree form in figure 15.

1

2

1, 0, 3

a

4, 5, 9

b

L
3

3, 7, 8

c

2

1, 1, 1

F

2, 5, 0

G

a

R

Figure 15: Backward Induction Solution

From the graph, we can see that player 1’s best strategy is to play L, since she can
reach her max payoff,4. Player 2’s best strategy is to play bG. Finally, player 3’s best
strategy is to play c.

We can outline the two following propositions (without proof).

Proposition 10 (Zermelo-Kuhn Theorem). Any finite game with perfect information
has a backward induction solution in pure strategy

Proposition 11. Any Backward Induction Solution is a Nash Equilibrium. Still, the
converse is not true.

Let’s now assess, through a simple example, the issue of the uniqueness of the BIS.
Take the game tree in the following figure.

1

2

3, 1

A

1, 1

B

R

2, 0

L

The Backward Induction Solutions are: (R,A),(L,B), (L,σ2(A)),(R,σ2(A)), where
σ2(A) ≥ 1

2
Since σ1(L) = σ2(A) =

1
2
, player 1 randomizes. And since the second player

is indifferent, then there are many BIS. Generically, BIS is unique in Pure Strategies.
For what concerns the link between BIS and Weakly Dominated Strategies, let’s

see Figure 16. In the figure below, L weakly dominates R, but the BIS are (RB) and
(LB). Generically BIS is in weakly undominated strategies.
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1

2

1, 4

A

0, 3

B

R

1, 2

L

Figure 16: BIS and weakly dominated strategies

Example 15: The Centipede Game

Let’s now consider the following game. There are two players. Each player must choose
between [S,C]. If S is chosen, the game finishes. If C is chosen, the game continues.
The payoffs grow as the game is long. Furthermore, as the game is played, each player
gets the payoff in the following way: the total payoff is doubled, but player i gives 1 unit
to player j. The game is finite. This is called the "Centipede Game" because, in the
original version, in the final round, each player has the possibility of obtaining a payoff
equal to 100. In this game, roughly speaking, we can see two conflicting "attitudes."
On the one hand, each player wants to continue since as long as the game is played,
the payoff is greater. On the other, continuing, the opponent steals some payoff from
her so that each player wants to stop.

Without loss of generality, we can represent this game in the following (shortest)
tree form.

S S S S S S

CCCCCC1 1 12 2 2

1, 0 0, 2 3, 1 2, 4 5, 3 4, 6

6, 5

Figure 17: A simplified version of the Centipede Game

The BIS for the two players are (S,S,S) and (S,S,S). This is a NE. But there are
others. Another NE is that player 1 plays S in the first information set, and player 2
plays S in his first information set with a probability close to 1 (but less than 1).

4.5 Subgame Perfect Equilibrium

We cannot apply BIS if the game has no perfect information and a finite horizon. A
more general concept is that of Subgame Perfect Equilibrium. This idea has been
developed mainly by Reinhardt Selten.
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In order to define that, we must start defining the idea of subgames and subtrees.

Definition 4.4 (Subtree). A subtree consists of one node and all his successors, to-
gether with the precedence relation q on these nodes

Definition 4.5 (Subgame). A subgame of an extensive form game is an extensive form
game whose tree is a subtree of the tree of the original game, and the information set
and the payoff are as in the original game

Since it is evident, from the definition above, that even the original game is, in
reality, a subgame, then we need a further definition, that of a proper subgame.

Definition 4.6 (Proper Subgame). A proper subgame is a subgame that is not the
original game

Then we can now define the Subgame Perfect Equilibrium.

Definition 4.7 (Subgame Perfect Equilibrium). A Subgame Perfect Equilibrium is a
profile of behavioral strategies such that their restriction to any subgame is a Nash Equi-
librium of that subgame. A Subgame Perfect Equilibrium must be a Nash Equilibrium
in the original game and in the subgame.

Example 16: Sequential Bargaining

This example was developed in an important paper by Ariel Rubinstein (1982). Two
players must split a dollar. One player makes a proposal (s1, 1−s1). If player 2 accepts,
then the game stops and each player receives what has been proposed. Otherwise, the
game continues, and this time player 2 makes a proposal (s2, 1 − s2) (notice that (si
always refers to what player 1 gets). However, then, what each player receives is
discounted by δ ∈ (0, 1). Roughly speaking, the delay is costly.

The game has an infinite horizon. However, we can start with a simplified version,
where there are only 3 periods:

• In period 1, player 1 makes a proposal. If it is not accepted, then the game moves
to the second period.

• In period 2, player 2 makes a proposal. If it is not accepted, then the game moves
to the third (and final) period.

• In period 3 there is a split.

We can represent this situation in the tree in Figure 18. Since this game has finite
horizon, we can use backward induction.

• In period 3, player 1 receives s2 if he accepts, and δs if he refuses. Therefore, he
accepts if s2 ≥ δs. It is clear that player 1 accepts if s2 > δs. But he does that
also if s2 = δs. To understand that, let’s look at player 2. Take δs as a threshold.
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1

2

(s1, 1− s1)

Accept

1

(δs2, δ(1− s2))

Accept

(δ2s, δ2(1− s))

Refuse

1

Refuse

2

Figure 18: Three stages Rubinstein Sequential Bargaining

If player 2 offers s2 < δs, then player 1 will refuse, and player 2 will get δ(1− s).
Let’s say player 1 refuses s2 = δs with probability β > 0. Then player 2 receives
(1−β)(1− δs)+β(1− s2). This is less than 1− s̃ where s̃ is close and larger than
δs (notice that 1− δs > δ(1− s).

• In period 2, at any information set, player 1 accepts s2 if s2 ≥ δs. At any
information set, player 2 offers s2 = δs.

• In period 1, player 1 makes an offer, s1. If player 2 accepts, he gets 1− s1. If he
refuses, he will get δ(1− δs). Player 2 accepts if and only if:

1− s1 ≥ 1− δ(1− δs)

s1 ≤ 1− δ(1− δs)

But then notice that: 1−δ(1−δs) > δ2s. Therefore at period 1, at any information
set, player 2 accepts if and only s1 ≤ 1 − δ(1 − δs). Then, at the initial node,
player 1 offers s1 = 1− δ(1− δs)

In this version of the game, with perfect horizon, the only Subgame Perfect Equi-
librium is: player 1 offers s1 = 1− δ(1− δs) at the initial node, and player 2 accepts.

Let’s now focus on the Infinite Horizon Game. In this game, we can write the
following payoffs. If players reach an agreement on (sj, 1 − sj) in period t, the payoff
evaluated in the first period are δt−1sj, 1 − δt−1(1 − sj). If there is no agreement, the
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payoff is (0, 0). So we can write for player 1:

u1(s1) =

{
δt−1sj if an agreement is reached at period t

0 if there is no agreement

And for player 2, we can write:

u2(s2) =

{
δt−1(1− sj) if an agreement is reached at period t

0 if there is no agreement
We can devise two strategies: Tough, where a player accepts everything for himself.

Therefore he accepts a proposal if and only if he receives everything for himself. Soft,
where a player offers to the other everything and accepts everything. We can therefore
find three possible NE: (Tough,Soft),(Soft,Tough),(Tough,Tough). However, they
are not SPE.

Notice that, in the game with infinite horizon, all the subgames are equal. The only
difference is that in some subgames, player 1 makes the first offer, and in some others,
player 2 makes it. In the subgames where 1 makes the first offer, we can define:

• v̄1 is the max payoff of player 1 across all the SPE

• v1 is the min payoff of player 1 across all the SPE

In the subgames where 2 makes the first offer, player 2 can receive at least 1− δv̄1.
Indeed, player 1 cannot accept an offer greater than δv̄1. Equally, she can get at most
1 − δv1. Assume she makes an offer s2. If this offer is accepted, then she gets 1 − s2.
But s2 cannot be lesser than δv1, therefore 1 − s2 must be at most 1 − δv1. Assume
the offer s2 is rejected. In the next period, player 2 will get at most 1 − v1. But
δ(1− v1) < 1− δv1.

Go to the subgame where 1 makes the first offer. Player 1 can get at least 1− δ(1−
δv1). If player 1 gives to 2 δ(1− δv1), then player 2 accepts. Then, v1 ≥ 1− δ(1− δv1).
Player 1 can get, at most, 1− δ(1− δv̂1) if the offer is accepted. If the offer is rejected,
he can obtain at most δ(1− δv̂1). This is because tomorrow he can obtain at most δv1
but δ2v1 < δ(1− δv1).

Then we have:
v1 ≥ 1− δ(1− δv1)

v1 ≥ 1− δ + δ2v1
v1(1− δ2) ≥ 1− δ

v1 ≥
1

1 + δ
and

v̄1 ≤ 1− δ(1− δv̄1)

v̄1 ≤ 1− δ + δ2v̄1

v̄1(1− δ2) ≤ 1− δ

v̄1 ≤
1

1 + δ
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Therefore we have: v1 = v̄1 =
1

1+δ
.

Let’s see now the players where player 2 makes the first offer. In any subgame
perfect equilibrium, player 1’s payoff is 1

1+δ
. The payoff of player 2 cannot be greater

than δ
1+δ

, otherwise the sum of the payoffs is greater than 1. At the same time, it
cannot be less than δ

1+δ
. Indeed, if he gets less than this, at time t, he will receive

anyway δ( 1
1+δ

). So player 2’s payoff is δ
1+δ

.
This is the (unique) Subgame Perfect Equilibrium of this game: player 1, at any

information set, offers s1 = 1
1+δ

. Player 2 accepts if s1 ≥ δ
1+δ

. Player 2, at any
information set, offers s2 = δ

1+δ
and accepts s1 if and only if 1− s1 ≥ δ

1+δ
, which means

s1 ≤ 1
1+δ

.
In equilibrium, the payoff of the players is ( 1

1+δ
, δ
1+δ

), and 1
1+δ

> δ
1+δ

.
Notice that in this game, the first mover has an advantage. Indeed it is costly for the

other player to reject the first offer. Actually, the numerical value of the payoff depends
on the discount factor δ, which measures impatience. If players are very impatient, so
that δ ∼ 0, then the payoffs are ∼ (1, 0). On the contrary, if they are less impatient,
say δ ∼ 1, then the payoffs are ∼ (1

2
.1
2
).
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5 Repeated Games
Roughly speaking, these are simply games that are repeated several times. In many
games, players have the incentive to behave opportunistically, but if the game is re-
peated several times, possibly infinitely many times, then the players have the incentive
to cooperate.

There are three types of repeated games:

• Games with perfect monitoring: these are games where players can observe the
moves of others.

• Games with imperfect monitoring: in these games, players do not actually observe
what the others do but receive a signal at the end of any stage.

• Games with private monitoring: in these games, the outcome in each period is
not directly observable.

In these notes, the focus will be just on games with perfect monitoring.
Let’s start with an example, the Battle of Sexes again, but with a slight modification.

The new payoff matrix is:

Alice | Bob Opera Football C2

Opera 3,1 0,0 6,0
Football 0,0 1,3 0,0

C1 0,0 0,0 5,5

If the game is played just once, the NE are those of the Battle of Sexes: (Op, Op),
(F, F), σ∗ = (1

4
, 3
4
). Indeed, C1 is strictly dominated by α(Op)+(1−α)(F ) with α ∼ 1,

and C2 is strictly dominated by β(Op) + (1− β)(Op) with β ∈ (0, 1).
But suppose that the game is played twice. Player i plays Ci in period 1. Assume

further the following strategy: if in period 1, the action profile is (C1, C2), in the second
period, play Op. Otherwise, play F.

The total payoff is the sum of the payoffs of each period. Then player 1’s payoff,
if he follows this strategy, is 5 + 3 = 8. The payoff if he deviates is 6 + 1 = 7. So he
does not deviate. The same does player 2. If he plays this strategy, he gets 5 + 1 = 6.
Otherwise, he gets 0 + 3 = 3. So in the first stage, both players have the incentive to
play (C1, C2). So we can construct a NE in 2 periods, which is supported by strategy
(C1, C2) even if this is not a NE in the first-period game.

5.1 Fundamentals

We start defining the stage game, which is a game as usual. G = (A1, . . . , An, g1, . . . , gn),
where Aj is the set of actions, and A =×Aj. Each player’s payoff is given by gi :
A −→ R. However, now G is played several times, t = 1, 2, . . . , T , where T ≤ ∞.
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Therefore, we define ht as the history of the game from the beginning until the time
t. Taking ai ∈ Ai, then we can write ht = (a0i , a

1
i , a

2
1, . . . , a

t−1
i ). Also, we can write

at = (at1, . . . , a
t
n). H t is the set of histories at the beginning of t. H0 = {h0} is the

empty history.
For example, in a Prisoner’s Dilemma repeated 4 times, a possible history of the

game is h4 = ((C,D), (C,C), (D,D), (D,C)).
Notice that since the players have perfect monitoring, then the history of the game

is common knowledge. Furthermore, for each history, we can define a subgame. So H t

is the set of possible subgames. If T < ∞, we can define a complete history. If T = ∞,
then h∞ = (a0, a1, a2, . . . ).

5.2 Pure and Mixed Strategies

If T < ∞ we can write the set of available strategies for player i as Si = (s1i , s
2
i , . . . , s

T
i ).

Each strategy sti is therefore:
sti : H

t −→ Ai

The same with T = ∞.
In the case of mixed strategies, we can write βi = (β1

i , β
2
i , . . . , β

T
i ).:

βt : H t −→ ∆(Ai)

Given a strategy profile Si and a strategy sti, we can describe a game in the following
way. At t = 0, a0 = (S0

1(h
0) . . . , S0

n(h
0)). At t = 1, a1 = (S1

1(a
0), . . . , S1

n(a
0)). And

h2 = (a0, a1).
If players randomize, given a strategy profile βi, β = (β1, . . . , βn) and a strategy βt

i ,
we can write:

Pr(ht+1|(β1, . . . , βn)) = Pr(a0|β)Pr(a1|a0β) . . . P r(aT |a0 . . . aT−1β)
n∏

i=1

βt
i(a

t
i|a0 . . . at−1)

We can define the payoffs in a formal way. If T < ∞, then:

ui(h
t+1) =

1− δ

1− δt+1

T∑
t=0

δtgi(a
t)

Where δ ∈ (0, 1]. If T = ∞, instead:

ui(h
∞) = (1− δ)

∞∑
t=0

δtgi(a
t)

Where δ ∈ (0, 1).
1−δ

1−δt+1 and (1−δ) are a sort of normalization factors, which make it easy to compute
the payoff with respect to the actual values of each stage game.7.

7Notice that they do not affect the value of the payoff functions because we are doing an affine
transformation (each utility function is unique up to a positive linear transformation)
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5.3 The set of possible payoffs

Let’s take the following 2× 2 matrix:

1 | 2 C D
C 4,4 0,5
D 5,0 1,1

These payoffs can also be represented graphically in figure 19.

g1

g2(1, 1)

(0, 5)
(4, 4)

(5, 0)

Figure 19: The set of possible payoffs of the game above

This is a Convex Hull of the points representing the payoffs, namely the smallest
convex sets containing them. We can write:

Co(G) =
{
(4, 4)(5, 0)(0, 5)(1, 1)

}
Any point inside Co(G) can be written as a convex combination of the four points.

Therefore we can write, for instance:

1

3
(4, 4) +

1

3
(5, 0) +

1

3
(0, 5)

As the expected payoff of playing (C, C),(D, C), and (C, D). Notice that if players
play only once they cannot use this randomization (due to the fact that there are
independent probability distributions). But this is feasible in repeated games.

Therefore, in the repeated games we can get more than in independent randomiza-
tion.

Formally, we write the set of all possible payoffs as:

V = Co(G) =
{
g1(a), g2(a), . . . , gn(a)|a ∈ A

}
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5.4 Solving the Games

We have two different cases: finitely repeated games and infinitely repeated games.
Let’s start with the earlier.

5.4.1 Finitely Repeated Games

Let’s see first the simplest case, that of a game with a unique NE. We take a standard
Prisoner’s Dilemma repeated finitely many times, i.e. with T < ∞ and δ ∈ (0, 1]. We
can write the game as G(T, δ).

1 | 2 C D
C 4,4 0,5
D 5,0 1,1

Since the game is finite, we can use Backward Induction. At t = T , and i = 1, 2,
sTi (h

T ) = D, for all hT ∈ HT . At t = T − 1, sT−1
i (hT−1 = D, for all hT−1 ∈ HT−1. And

so on.
Therefore, in a PD, the unique subgame perfect equilibrium is ∀i, ∀t, and ∀ht ∈ H t,

sti(h
t) = D. The SPE is unique because the NE of the stage game is unique. This is

generalized in the following proposition.

Proposition 12. Suppose G(T, δ) has a unique (pure or mixed) Nash Equilibrium,
a∗ = (a∗1, . . . , a

∗
n) and T < ∞. The G(T, δ) has an unique Subgame Perfect Equilibrium:

∀i, ∀t, and ∀ht ∈ H t, sti(ht) = a∗

Let’s see a more complicated example, the following 3× 3 matrix:

1 | 2 C D M
C 4,4 0,5 0,0
D 5,0 1,1 0,0
M 0,0 0,0 3,3

Assume that there are two periods, and for simplicity, δ = 1. In the stage game,
there are two pure strategies NE, (D, D), and (M, M). However, we can build a strategy
such that a NE is supported by playing (C, C) in the first stage:

sti(a
0) =

{
M if a0 =(C,C)
D Otherwise

Therefore, if in the first period, it is played (C, C), then in the second, it is played
(M, M), a NE. If in the first period, it is not played (C, C), then it is played (D, D),
another NE. Still, we can see that if players stay committed to this strategy, they have
a greater payoff. Player 1 gets 4 + 3 = 7, and if he deviates, he receives 5 + 1 = 6. The
same for player 2.
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5.4.2 Infinitely Repeated Games

Take a game G(∞, δ), where δ ∈ (0, 1) (usually it is assumed that δ is close to 1, i.e.,
that players care about the future). Let’s see a Prisoner’s Dilemma again and if we can
construct an equilibrium strategy sustained by choosing C in the first period (namely,
by players cooperating).

1 | 2 C D
C 4,4 0,5
D 5,0 1,1

Let’s write the following strategy (which is called Trigger Strategy):

sti(h
t) =

{
C if ht =((C,C),. . . ,(C,C))
D Otherwise

In words, each player plays C if the other plays C. Otherwise, if one plays D, the
other player will play D forever. Of course, if player i plays C, the other player will
always play C. Take a history ht = ((C,C),. . . ,(C,C)). Following this strategy, the
payoff of the player i is:

(1− δ)(4 + 4δ + 4δ2 + . . . ) ≈ 4

If a player deviates, the payoff is:

(1− δ)(5 + δ + δ2 + . . . ) =

(1− δ)5 + δ =

5− 5δ + δ =

5− 4δ

The deviation is profitable only if 5 − 4δ > 4, which means if δ ≥ 1
4
. This means that

if players are patient, they can sustain many strategies.
We can generalize this in an important result of Game Theory, known as the Folk

Theorem, formally stated, for the first time, by James Friedman in 1971.8

Theorem 5.1 (Friedman’s Folk Theorem). Let G be a normal form game, and let
(a1, . . . , an) be the payoff vector at a Nash Equilibrium of G. Let (x1, . . . , xn) ∈ V
denote any other feasible payoff vector. If xi > e, ∀i, then it exists a δ̄ < 1 such that
∀δ > δ̄, G(∞, δ) admits a Subgame Perfect Equilibrium with payoffs (x1, . . . , xn).

8The name, Folk Theorem, refers to the fact that for some years, in the 1950s and 1960s, the
implications of the theorem were common knowledge among the game theorists, even if none had
formally stated them
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g1

g2

e

xi

V

Figure 20: Two players graphical representation of the Folk Theorem

Proof. Assume for simplicity that ā = (ā1, . . . , ān) ∀i and that xi = gi(ā). Let a∗ =
(a∗1, . . . , a

∗
n) be a Nash Equilibrium of G so that gi(a) = e.

Construct the following strategy. ∀i, let si(h
0) = āi at t = 0. At t > 0, instead:

sti(h
t) =

{
āi ht = (ā . . . , ā)

a∗i otherwise

If the players follow this strategy, they choose āi in any period, and they get x in
each period. We want to show that this is a Subgame Perfect Equilibrium.

Assume ht ̸= (ā, . . . , ā). Player j plays a∗j forever, so player i maximizes his payoff
today, playing her NE.

Assume h0 = (ā, . . . , ā). If all players follow the strategy, each player’s payoff is:

(1− δ)(xi + δxi + δ2xi + . . . )

If player j deviates, he gets:

(1− δ)(di + δe+ δ2e+ . . . ) =

(1− δ)di + δe

Where di = maxa gi(a). The deviation is not profitable if xi ≥ (1 − δ)di + δe.
This in turns implies δ > di−xi

di−e
which is lesser than 1, since xi > e. If we take

δ̄ = maxi=1,...,n
di−xi

di−e
, then we can find a δ > δ̄ such that sti is a Subgame Perfect

Equilibrium, yielding payoffs xi > a∗i .

So far, we have seen only the trigger strategy. Let’s introduce now another concept,
that of MinMax.
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Take the stage game G = (Ai, . . . , An, g1, . . . , gn) and strategy profile of the op-
ponent, a−i, define wi(a−i = maxai∈Ai

gi(ai, a−i) the max payoff i receives when the
opponent plays a−i.

Suppose a−i is chosen to minimize wi, that is, vi = minai wi(a−i). Then vi is the
MinMax of player i, the minimum player i gets when playing her best response.

Let’s see one example. Take the following matrix.

1 | 2 C D
C 4,4 0,5
D 5,0 1,1

Player 1 plays D, as well as player 2. The NE is (D, D). Looking at the payoffs, we
see that for each player, 1 is the maximum they can obtain, choosing for each strategy
the minimum payoff. That is, for player 1, playing C, the minimum is 0. Playing D,
the minimum is 1. And 1 > 0. Notice that v1 = v2.

Then we can state and prove the following result.

Proposition 13. In any Nash Equilibrium of G(T, δ) the payoff of player i is at least
vi

Proof. Fix strategy of opponent β−i. ∀j,∀h∗t, β(ht) ∈ ∆(Aj). Suppose (βi, β−i) is a
Nash Equilibrium, so that u(βi, β−i) ≥ u(si, β−i) ∀si. Take s̃i. At any history ht,
s̃ti(h

t) = argmaxai gi(ai, β
t
j(h

t)j ̸=i). Choose an action to maximize today’s payoff that
is, wi(β

t
j(h

t))j ̸=i ≥ vi. Therefore, in a Nash Equilibrium, the payoff is larger or equal
to it, or wi is a profitable deviation.

Let’s see two graphical examples. First the Prisoner’s Dilemma (Figure 21). The
NE of this game is given by the strategy (D, D), and the payoff is (1, 1). This is also
the MinMax for each player. The support set passes from the NE.

A different situation is captured in Figure 22. There the NE is sustained by the
support set passing from the MinMax.

Let’s now define the concept of One-shot deviations.

Definition 5.1. Given a strategy si of G(t, δ), a one-shot deviation by player i at
history ht is a strategy s′i such that s′ti (ĥt ̸= sti(ĥ

t) but s′ti (ht) = sti(h
t) ∀ht that follows

ĥt.

The trigger strategies are an example:

s0i (h
0) = C

sti(h
t) =

{
C if hT = ((C,C), . . . , (C,C))

D Otherwise

whereas T = 1, . . . , t − 1. Playing always C is the equilibrium strategy. Playing
(D,C,C, . . . ) is not a one-shot deviation. Playing always D is a one-shot deviation.

Then, we have the following proposition.
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g1

g2(1, 1)

(0, 5)
(4, 4)

(5, 0)

Figure 21: Prisoner’s Dilemma

Proposition 14. Let G be finite, a strategy profile S = (s1, . . . , sn) is a Subgame
Perfect Equilibrium of G(∞, δ) if and only if one-shot deviations are not profitable
∀i, ∀t,∀ht ∈ H t and for all possible deviations s̃i form si at ht. I.e.

ui(si, s−i|ht) ≥ ui(s̃i, s−i|ht)

This result holds also for G(T, δ) where T < ∞

Proof. (⇒) No deviations are profitable by the definition of Subgame Perfect Equilib-
rium. Therefore, even one-shot deviations are not profitable. (⇐) Let’s proceed by
contradiction. Assume s is a strategy profile of G and i has a profitable deviation ŝi
at h̃t. Namely ui(ŝi, s−i|h̃t) − ui(si, s−i|h̃t) = A > 0. Choose now t̃ > t. Let ŝi be the
strategy:

s̄i(h
t) =

{
ŝi(h

t) If t < t̃

si(h
t) t ≥ t̃

Consider now the difference |ui(s̄i, s−i|h̃t)−ui(ŝi, s−i|ĥt)| = (1−δ)|
∑∞

t δt(gi(at|s̄i, s−i, h̃
t)−

gi(a
t|ŝi, s−i, h̃

t))| ≤ (1− δ)
∑∞

t δt|gi(s̄i, s−i, h̃
t)− gi(a

t|sti, s−i, h̃
t))|.9

Moreover, we have (−δ)
∑∞

t δt|gi(at|s̄i, s−i, h̃
t)−gi(a

t|ŝi, s−i, h̃))| ≤ (1−δ)
∑∞

t δtM =
δtM for some M > 0, since G has bounded payoffs. Let t → ∞ so δtM → 0. Hence,
if t is large enough, then s̄ is also a profitable deviation from si at ht. Then unilateral
deviations are not profitable.

It remains to prove that s is a Subgame Perfect Equilibrium. That is, we must show
that no deviation is profitable. Starting at ht, assume that the histories where si and s̄i
are different is N . Since G is finite and one-shot deviations are never profitable, then
1 < N < ∞. Since si and ŝi differ at N histories, then it exists a ht that follows ht0 such

9This holds due to |A+B| ≤ |A|+ |B|. This is known as the Triangle Inequality
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g1

g2

v2

v1

NE

Figure 22: MinMax ̸= NE

that ŝi(h
t) ̸= ŝj(h

T ) ∀T > t. Then ŝi is a one-shot deviation from si at ht. However,
one-shot deviations are never profitable, so ui(si, s−i|ht) ≥ ui(ŝi, s−i|ht). Constructing
an s̃i equal to ŝi, then at ht, we get s̃i(ht) = si(h

t). Then, if ŝi is a profitable deviation
from si at ht0 so it is s̃i(ht0). Therefore, s̃i is now the profitable deviation with respect
to si that differs from it (N − 1) times, reaching a contradiction. Hence, if a profitable
deviation from the strategy profile s exists, we conclude that s is not a Subgame Perfect
Equilibrium.

Let’s see an example. Take the Prisoner’s Dilemma matrix and define the following
strategy.

1 | 2 C D
C 4,4 0,5
D 5,0 1,1

s0i (h
0) = C and sti(h

t) =

{
C if at−1

j = C

D if at−1
j = D

This strategy is called "Tit for Tat." It states that in the first period, a player plays
C. After, he plays the strategy of her opponent on the period before. This strategy
implies that every player has a memory of what happened in the period before. We can
classify the different histories of the game as HCC , HCD, HDC , HDD, where ht ∈ Ha1,a2

and at−1 = (a1, a2). We can also define the continuation payoff for player i at ht ∈ Ha1,a2

as Wa1,a2 . Then we can write:

WCC = 4 + 4δ + 4δ2 + 4δ3 + · · · = 4

1− δ
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WCD = 5 + 0δ + 5δ2 + 0δ3 + · · · = 5

1− δ2

WDC = 0 + 5δ + 0δ2 + 5δ3 + · · · = 5δ

1− δ2

WDD = 1 + δ + δ2 + δ3 + · · · = 1

1− δ

If one player deviates in one period, she is punished in the following periods. So that,
to have an equilibrium, it must be the case that, for player i, the continuation payoff
associated with each different history be greater or equal to the possible deviations.
Namely, the continuation payoff for the strategy "both cooperate" be greater or equal
to the payoff player i receives playing D plus the discounted value of the continuation
payoff WDC . That is:

WCC ≥ 5 + δWDC =

4

1− δ
≥ 5 + δ(

5δ

1− δ2
)

4

1− δ
≥ 5(1− δ2) + 5δ2

1− δ2

4

1− δ
≥ 5− 5δ2 + 5δ2

1− δ2

4

1− δ
− 5

1− δ2
≥ 0

4

1− δ
+

5

(1− δ)(1 + δ)

4− 4δ − 5

(1− δ)(1 + δ)
≥ 0

4δ − 1

1− δ2
≥ 0

δ ≥ 1

4

This is for all continuation payoffs. Then solving each inequality:

WCD ≥ 4 + δWCC ⇒ δ ≤ 1

4

WDC ≥ 1 + δWDD ⇒ δ ≥ 1

4

WDD ≥ 0 + δWCD ⇒ δ ≤ 1

4

Therefore, we have δ = 1
4
. Tit for Tat is a Subgame Perfect Equilibrium if δ = 1

4
.

A general version of the Folk Theorem has been proved in 1986 by Drew Fudenberg
and Eric Maskin.
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Theorem 5.2 (Fudenberg & Maskin’s Folk Theorem). Assume one of the following:
(i) n = 2 (ii) V has a non-empty interior.

Then, for all v ∈ V with vi ≥ vi ∀i, it exists a δ̄ < 1 such that δ ≥ δ̄ and it exists
a Subgame Perfect Equilibrium σ of G(∞, δ) such that ui(σ) = vi ∀i.

Proof. Assume a = (a1, . . . , an) such that ∀i gi(a) = vi. Assume also that αj MinMax
strategies of j’s opponent, such that gj(α

∗
j , α−j) = vj ∀j and gi(α

∗
j , α−j) = wj

i ∀i ̸= j.
Because, from (i), V has a non-empty interior, it exists a v′ = (v′1, v

′
2, . . . , v

′
n) and ϵ > 0

such that ∀i vi < v′i < vi and ∀i vi(i) = (v′1 + ϵ . . . , v′n + ϵ) ∈ V . Let’s also assume for
simplicity that ∀i it exists an action profile a(i) such that, ∀j gj(a(i)) = v′j(i).

Let’s try to construct a strategy profile that is a Subgame Perfect Equilibrium for
δ big enough. The game has different phases.

In phase 1, every player plays strategy a to obtain a payoff v. The game remains in
phase 1 unless there is a unilateral deviation from a. If there is a deviation by player
j, the game moves to phase 2j.

In phase 2j, players play (α∗
j , α−j) for N -periods, unless there is unilateral deviation

from (α∗
j , α−j). After N -periods without unilateral deviation, the game moves to phase

3j. Otherwise, the game moves to phase 2i for deviations of player i (i is the index of
the deviating player, it can be also player j).

In phase 3j, players play a(j), to obtain payoff v′(j). The game remains here unless
there is a unilateral deviation by a player i (including also j). In this case, the game is
moved to 2i.

In phase 1 player i gets vi. One shot deviation gets at most (1 − δ)maxa gi(a) +
δ(1− δN)vi+ δN+1vi. This is smaller than vi for δ large enough, so there is no incentive
to deviate for player i.

In phase 3j, player i gets v′i+ϵ. One-shot deviation gets at most (1−δ)maxa gi(a)+
δ(1− δN)vi + δN+1v′i. Again v′i + ϵ > v′i, so there is no incentive to deviate.

In phase 3i, player i gets v′i. One shot deviation gets at most (1 − δ)maxa gi(a) +
δ(1− δN)vi + δN+1v′i, which is less than v′i for δ large enough.

Let’s now consider phase 2j with j ̸= i and N ′ ≤ N left periods. Following the
equilibrium strategy, player i gets (1− δN)wj

i + δN
′
(vi + ϵ). One shot deviation gets at

most (1− δ)maxa gi(a)+ δ(1− δN)vi + δN+1v′i. As δ → 1, this goes to v′i, so there is no
incentive toward unilateral deviation when δ is large enough.

Finally, consider phase 2j, con N ′ < N periods left. Player i gets (1+δN
′
)vi+δN

′
vi.

One shot-deviations get at most (1 − δ)vi + δ(1 − δN)vi + δN+1vi which is equal to
(1− δN+1)vi+ δN+1v′i. But (1+ δN

′
)vi+ δN

′
vi < (1− δN+1)vi+ δN+1v′i, since (N ′ < N).

Then, there is no incentive to deviate.
This concludes the proof since the same reasoning can be extended to phase 1 and

to all players.
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6 Stronger notions of equilibria: Perfect Bayesian Equi-
librium and Sequential Equilibrium

As far as the games become richer and more complicated, stronger notions of equilibrium
are required to rule out implausible equilibria. This is what we need for Bayesian Games
in extensive form. In particular, as we have seen, some equilibria embody non-credible
strategies as non-credible treats.

Let’s see the following tree:

1

1, 2

L

2

2, 1

A

0, 0

B

H

2

2, 1

A

0, 0

B

R

(L,B) is a Nash Equilibrium. However, B is not a credible threat since if player 2
plays it, she gets 0 instead of 2. Furthermore, B is strictly dominated. However, it is
not enough to rule out strictly dominated strategies. Notice also that the tree above
does not have proper subgames.

See now the following example, represented in Figure 23. This is called Selten’s
Horse. A NE and SPE of this game is ((Du),a,L). But notice that strategy a is not
credible since if player 2 plays it, she gets less than she would receive otherwise. Another
way of putting this is that at her information node, 2 will never play a.

1

3

4, 4, 4

L

1, 1, 1

R

D

2

3

5, 5, 0

L

2, 2, 2

R

d

1

1, 3, 3
A

0, 1, 1
B

aA

Figure 23: Selten’s Horse

Further refinement is needed. This is the idea of a system of beliefs.

Definition 6.1 (System of Beliefs). Given Γ = (X,Z, q,N, ϕ,A,H, p, u1, . . . , un), an
extensive form game, a system of beliefs is a mapping µ : X → [0, 1], such that ∀i,∀h ∈
Hi,

∑
x∈h µ(x) = 1
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In other words, a system of beliefs is the probability of being in each node given
the fact that a player is in a certain info set. This can be computed in the follow-
ing way. Having a strategy σ = (σ1, . . . , σn), µ(x) = Pr(x|σ)∑

x′∈h Pr(x′|σ) (supposing that∑
x′∈h Pr(x′|σ) > 0 If an information set h is reached with positive probability, we say

that h is on-path. Otherwise, that information set is said to be off-path.
A strategy profile σ together with a system of beliefs µ define an assessment. Given

this, we can define the notion of Sequential Rationality.

Definition 6.2 (Sequential Rationality). An Assessment (σ, µ) is sequentially rational
if, ∀i,∀h ∈ Hi, then

∑
x∈h µ(x)ui(σi, σ−i|x) ≥

∑
x∈h µ(x)ui(si, σ−i|x) ∀i

If an information set is feasible (that is, if it is reached when it is played strategy
σ), then you can reach it with probability ≤ 1. See the following example.

1

A

x
B

x′
C

x′′

D

Since β1(A) < 1, then we can write, following the Bayes’ rule:

µ(x) =
β1(B)

β1(B) + β1(C) + β1(D)︸ ︷︷ ︸
≡ 1− β1(A)

Let’s see another example, represented in figure 24. Look only to the probabilities
of player 2. Then µ(x) = 3

4
and µ(x′) = 1

4
. If player 4 plays D, is AL Sequentially

Rational?
Then we have µ(x)u2(AL, σ−2|x) + µ(x′)u2(AL, σ−2|x′) = 3

4
· 3 + 1

4
· 0 = 9

4

• What if I deviate to AR? 3
4
· 3 + 1

4
· 0 = 9

4
.

• What if I deviate to BL? 3
4
· 0 + 1

4
· 2 = 1

2

• What if I deviate to BR? 3
4
· 0 + 1

4
· 1 = 1

4

Then we can conclude that AL is Sequentially Rational.

6.1 Perfect Bayesian Equilibrium

However, not all systems of beliefs have sense, given certain strategies. An example
can be seen in the tree represented in Figure 25. The unique SPE is (B,b,R). Suppose
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1

2 x

0

B

3

A

3

x′

0

A

4

C

2

2

L

1

R

D

B

Figure 24: Sequential Rationality

1

2

x′

2, 1, 1

R

0, 1, 1

L

b

x

2, 0, 0

R

0, 1, 1

L

t

B

1, 2, 2

T

Figure 25:
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(T,b,L) with µ(x) = 1, µ(x′) = 0. This strategy is sequentially rational, however beliefs
do not make any sense.

We need to impose restrictions on Assessment, in particular to system of beliefs.
This leads to the following definition.

Definition 6.3 (Perfect Bayesian Equilibrium). An assessment (σ, µ) is a Perfect
Bayesian Equilibrium if it is sequentially rational and the beliefs are derived from
strategy σ using Bayes’ rule "whenever possible."

Notice that:

• For sure, you can use Bayes’ rule when the information set is on path

• Otherwise, it depends on the game.

We can now assess the notion of Sequential Equilibrium.

6.2 Sequential Equilibrium

To use Bayes’Rule, unless all information sets are on path, you must divide by zero. A
way to avoid that is to "perturb" the information set. Let’s see the following example.

1

2

x′

b

x 3

t

B T

Figure 26:

Assume β1(B) = 1, β1(T ) = 0 and β2(b) = 1,β2(t) = 0. Introducing a perturbation,
we have βn

1 (T ) = 1− ϵn1 , βn
1 (B) = ϵn1 , βn

2 (t) = ϵn2 , βn
2 (b) = 1− ϵn2 .

Then we can write:

µn(x) =
ϵn1 · (1− ϵn2 )

ϵn1 · (1− ϵn2 ) + ϵn1 + ϵn2
= 1− ϵn1

Therefore, taking the limit, we have limn→∞ µn(x) = 1
In general, assuming the tree in Figure 27. If player 1 plays A, then the information

sets of players 2 and 3 are reached with probabilities 0.
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1

A

2

3 x1

L
x2

R

B

x3

L
x4

R

C

Figure 27:

But if βn
1 (B) > 0 and βn

1 (C) > 0, and βn
2 (L) > 0 and βn

2 (R) > 0, then we can write
µn(x1) as:

µn(x1) =
βn
1 (B) · βn

2 (L)

βn
1 (B) · βn

2 (L) + βn
1 (B) · βn

2 (R) + βn
1 (C) · βn

2 (L) + βn
1 (C) · βn

2 (R)

And consequently:

µn(x2) =
βn
1 (B) · βn

2 (R)

βn
1 (B) · βn

2 (L) + βn
1 (B) · βn

2 (R) + βn
1 (C) · βn

2 (L) + βn
1 (C) · βn

2 (R)

µn(x3) =
βn
1 (C) · βn

2 (L)

βn
1 (B) · βn

2 (L) + βn
1 (B) · βn

2 (R) + βn
1 (C) · βn

2 (L) + βn
1 (C) · βn

2 (R)

µn(x4) =
βn
1 (C) · βn

2 (R)

βn
1 (B) · βn

2 (L) + βn
1 (B) · βn

2 (R) + βn
1 (C) · βn

2 (L) + βn
1 (C) · βn

2 (R)

And:
µn(x1) · µn(x4) = µn(x2) · µn(x3)︸ ︷︷ ︸

≡ µn(x1)
µn(x2)

=
µn(x3)
µn(x4)

A further definition is needed.

Definition 6.4 (Consistency). An Assessment (σ, µ) is consistent if it exists a sequence
{σn}nn=1 of completely mixed strategy profiles such that:

i) limn→∞ σn = σ
ii)limn→∞ µn = µ
Where µn(σn) is the profile system of beliefs derived from σn using Bayes’ Rule.

Then we can define the notion of Sequential Equilibrium (first advanced in Kreps
& Wilson 1982)

Definition 6.5 (Sequential Equilibrium). An Assessment (σ, µ) is a Sequential Equi-
librium if it is:
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• Sequentially Rational

• Consistent

Therefore, to find Sequential Equilibria, one has to check for Consistency and Se-
quential Rationality. The latter condition is satisfied if and only if one-shot deviations
are not profitable.

Example 17: Sequential Equilibrium

1

2, 1

A

x

1, 0

L

3, 2

R

B

x′

1, 3

L

2, 0

R

C

Let’s see the Pure-Strategy Sequential Equilibria. If player 1 plays B, then µ(x) = 1.
Player 2 plays R. A sequential equilibrium is (B,R, µ(x) = 1).

Player 1 plays C, then µ(x) = 0 and µ(x′) = 1. Player 2 plays L, but this is not
optimal for player 1. Therefore this is not a sequential equilibrium.

Let’s construct a sequential equilibrium where player 1 plays A, player 2 plays L.
L is optimal if 3(1− µ(x)) ≥ 2µ(x) (notice that µ(x′) = 1− µ(x)). Then µ(x) ≤ 3

5
.

If µ(x) = 0 and µ(x′) = 1, then (σ, µ) is sequentially rational. Indeed, take µ(x) =
α ∈ (0, 3

5
]. Take βn

1 (B) = αϵn and βn
1 (C) = ϵn(1− α). Then µn(x) = ϵnα

ϵnα+ϵn(1−α)
= α

Let’s check for consistency. Define βn
1 (B) = ϵ2n and βn

1 (C) = ϵn and {ϵn} → 0.
µn(x) = ϵn

ϵn+ϵ2n
= 1

1+ϵn
→ 1

Therefore (σ, µ) is a Sequential Equilibrium.
Another Sequential Equilibrium is: player 1 plays A, and player 2 randomizes be-

tween L and R, with β2(C) ∈ (0, 1) and β2(R) = 1 − β2(L). Only when µ(x) = 3
5

the

player 2 is indifferent. Then βn
1 (B) = 3

5
ϵn, βn

1 (C) = 2
5
ϵn. Then µn(x) =

3
5
ϵn

3
5
ϵn+ 2

5
ϵn

= 3
5
.

For player 2, only randomization is optimal.
Suppose player 1 plays A, the payoff is 2. Expected payoff of playing B is β2(L) +

3(1− β2(L), therefore β2(L) ≥ 1
2

There are no other Sequential Equilibria. Furthermore, if beta1(B) and β2(C) are
both greater than 0, they must be optimal, so player 1 must be indifferent (the case when
player 2 plays L with probability 1, but then playing C is not optimal). Randomizing
between A and B, between A and C, is not optimal.
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Example 18: Signaling Games

These are games between a sender, who is privately informed, and a receiver. The
sender (type t) chooses an action as. The receiver observes the action as and not the
type and chooses an action ar. The payoff depends on as, ar, t. The action signals your
type. One of the most famous examples is Spence’s Education Model. The ability
of each student is known only to her but affects the education he receives. A hiring
employee does not know the ability of the student, but he can develop an idea by looking
at her education.

N

S x

2, 1
u

0, 0

d
Ry

1, 3
u

4, 0

d
L

t1 0.5

S x′

1, 0
u

1, 2

dRy′

2, 4
u

0, 1

d L

t2 0.5

An equilibrium can be:

• Fully revealing (separating), when t1, t2 choose different actions;

• Pooling, when t1, t2 choose the same action

With more than 2 types, we can have partially revealing and partially pooling
equilibria.

In any Sequential Equilibrium, t2 plays L. To construct a Separating SE where t2
plays L and t1 plays R. For the receiver u strictly dominates d (3 > 0 and 1 > 0). R
is optimal for player S.

Let’s now construct a Pooling SE, where t1 and t2 play L. Take µ(y) = µ(y′) =
0.5. The receiver, when the sender plays L, plays u. When the sender plays R, the
receiver plays d, otherwise, the sender plays L. The Expected payoff for the receiver is
2− 2µ(x) ≥ µ(x), then µ(x) ≤ 2

3
.

Subsets of these games are the Cheap-Talk games.

Cheap-Talk Games

In these games, the sender chooses an action, i.e. a message (M). The receiver observes
the message but not the type and chooses ar. The payoff still depends on as, ar, t and
not M . Therefore, ∀ar, t we have ui(ar, t,M) = ui(ar, t,M

′). Since the message does
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not affect the payoffs, these games are called Cheap Talks. But the message, of course,
can influence the action of the receiver.

Furthermore, p ∈ ∆(T ) (where T is the set of sender’s types), p(t) is the probability
of type t, the receiver’s best response, a∗r = argmaxar

∑
t p(t)u(ar, t).

Suppose that after every m ∈ M (where M is the set of messages), the receiver plays
a∗r. The sender does not care about the messages. Every type t randomizes among all
messages according to the same probability distribution and the same βS ∈ ∆(M).
This is a Sequential Equilibrium, and it is called Babbling Equilibrium.

Let’s see games in normal form. Suppose T = {tH , tL}, M = {tH , tL} and AR =
{a, b}. Then we have the following matrix.

Rec|Send tH tL
a a1,a1 0,0
b 0,0 b2,b2

In a separating equilibrium, the sender tH sends a message tH , and the receiver plays
a. The sender tL sends a message tL, and the receiver plays b. Another equilibrium
can be tH sends a message tL and the receiver plays a, and tL sends a message tH and
the receiver plays b. The meaning of the messages is endogenous.

Suppose that t1 =
1
3
, t2 =

1
3

and t3 =
1
3
. Then we have the matrix.

Rec|Send t1 t2 t3
a 2,1 0,1 0,0
b 0,0 1,0 1,1

Types t1 and t2 send the message m with probability 1
2

and the receiver plays a.
Type 3 sends message m′, and the receiver plays b. This is called a Semi-separating
Equilibrium.

Let’s see another case, where t1 = t2 =
1
2
.

Rec|Send t1 t2
a 3,2 0,1
b 2,0 2,2
c 0,1 3,0

M is arbitrary. In Babbling Equilibrium, the receiver chooses b. Can I have an
equilibrium such that after m̃, the receiver plays both a and c with positive probability?
No because a and c will always be less than b. Indeed, 3µ(t|m̃) = 3(1− µ(t|m̃)) gives
µ(t|m̃) = 3

2
< 2 Therefore, the receiver, after any message can randomize between

ab,bc, or play a,b,c but not ac.
Suppose there are two messages m and m′ sent with positive probability, and the

receiver reacts differently. Type t1 cannot be indifferent between them, t1 sends only
m or m′, therefore m′ comes only from t2.
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Appendix: Mechanism Design
So far, we have seen different examples of games and concepts of solutions. The main
problem was that, given a game, of finding a suitable Nash Equilibrium or other concepts
of solutions. Now the problem is different: that is, what we can achieve when agents
have private information.

Example 19: an optimal auction

Imagine you are a seller and want to maximize your expected revenue. What is the
auction mechanism you want to choose? This is an example of what is known as
Mechanism Design.

Assume there is a seller who has an object to sell. The value is zero for her. There
are also n− potential buyers, each of them associated with a different type vi. Types
are private and independent. The payoff of type vi is equal to vi − ti.

To find an optimal auction, fix a game and fix a BNE. The types are (v1, . . . , vn).
The expected transfers of player i associated to these types are ti(v1, . . . , vn). The
probability i gets the good is qi(vi, . . . , vn).

Notice that we just look at the expectation because the payoff is linear in the
transfers. Furthermore, we need probabilities because the seller does not know what
the buyers will do (perhaps they are mixing).

For the sake of simplicity, we can assume that the realization of vi is v. Therefore,
we can write:

Ti(v) = Ev−i
[ti(v1, . . . , vn)|vi = v]

Qi(v) = Ev−i
[qi(v1, . . . , vn)|vi = v]

Ui(v) = v ·Qi(v)− Ti(v)

The seller’s revenues are written as:

R = Ev1,...,vn

( n∑
t=1

ti(v1, . . . , vn)
)

=
n∑

i=1

∫ ∞

0

Ti(v)fi(v)dv︸ ︷︷ ︸
≡ Evi (Ti(v)) ≡ Evi

(
Evi (ti(v1, . . . , vn)|vi

)
(3)

If this is an equilibrium, a type cannot have a higher payoff mimicking another type.
So for type vi, it must be true:

Ui(v) =v ·Qi(v)− Ti(v) =

v · Ev−i

(
qi(v1, . . . , vn)|vi = v

)
− Ev−i

(
ti(v1, . . . , vn)|vi = v

)
≥

v · Ev−i
Ev−i

(
qi(v1, . . . , v

′, . . . , vn)|vi = v
)
− Ev−i

(
ti(v1, . . . , v

′, . . . , vn)|vi = v
)
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Another constraint is:

Ev−i

(
qi(v1, . . . , v

′, . . . , vn)|vi = v
)
=

Ev−i

(
qi(v1, . . . , v

′, . . . , vn)|vi = v′
)
=

Qi(v
′
i)

For every v′, v then we have:

• The Incentive Compatibility Constraint (IC) (see below):

v ·Qi(v)− Ti(v) ≥ v ·Qi(v
′)− Ti(v

′) (4)

• The individual rationality constraint (IR) (this assumption means that participa-
tion is voluntary):

Ui(v) ≥ 0 ∀vi ∈ [0, V ] (5)

We can see that (2) + Individual Rationality for type 0 implies (3) ∀v > 0. To see
this:

Ui(v) ≡ v ·Qi(v)− Ti(v) ≥ v ·Qi(0)− Ti(0) ≥ 0 ·Qi(0)− Ti(0) ≡ Ui(0) ≥ 0

So we can write:

Ui(0) ≥ 0 (6)

Let’s write the following proposition.

Proposition 15. Let qi : [0, V ]n → [0, 1] such that
∑n

i1
qi(v1, . . . , vn) ≤ 1 for all

(v1, . . . , vn), and write Qi(v) = Ev−i

(
qi(v1, . . . , v

′, . . . , vn)|vi = v
)
.

Then exists a function
Ti : [0, V ] → R

such that:
(i) Qi(·), Ti(·) satisfies IC if and only if Qi(·) is not decreasing ∀i.
(ii) If Qi(·), Ti(·) satisfy IC, then:

Ui(v) = Ui(0) +

∫ v

0

Qi(x)dx

and

Ti(v) = v ·Qi(v)−
[
Ui(0) +

∫ v

0

Qi(x)dx
]
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Proof. Let’s start with (i) ⇐. ∀v, v′ we can write:

Ui(v) = v ·Qi(v)− Ti(v)︸ ︷︷ ︸
(1)

≥ v ·Qi(v
′)− Ti(v

′)︸ ︷︷ ︸
(2)

And
Ui(v

′) = v′ ·Qi(v
′)− Ti(v

′)︸ ︷︷ ︸
(3)

≥ v′ ·Q(v)− Ti(v)︸ ︷︷ ︸
(4)

We can see that:
(1)− (4) ≥ (1)− (3) ≥ (2)− (3)

Therefore:
(v − v′)Qi(v) ≥ Ui(v)− Ui(v

′) ≥ (v − v′)Qi(v
′)

Notice that if v ≥ v′, then Qi(v) ≥ Qi(v
′). Therefore Qi(·) is monotonic and weakly

increasing. Therefore it is continuous almost everywhere. Take v as a continuity point
at Qi(·). Let v → v′, and divide by (v − v′). Then we have Ui(v)−Ui(v

′)
(v−v′)

≡ U ′
i(v) and:

Qi(v) ≥ U ′
i(v) ≥ Qi(v

′)

By the Squeeze Theorem, taking the limv→v of Qi(v) and limv→v′ of Qi(v
′), we have

Qi(v) = U ′
i(v).

Also:
(v − v′)Qi(v)︸ ︷︷ ︸

∈ (0, 1)

≥ Ui(v)− Ui(v
′) ≥ (v − v′)Qi(v

′)︸ ︷︷ ︸
∈ (0, 1)

This is a Lipschitz Function.10 Then we can write:

|Ui(v)− Ui(v
′)| ≤ |v − v′| · 1

A Lipschitz Function is absolutely continuous. So we can write:

Ui(v) = Ui(0) +

∫ v

0

U ′(x)dx =

Ui(0) +

∫ v

0

Qi(x)dx

Let’s see now (ii)⇐.

Ti(v) = v ·Qi(v)− Ui(v) =

v ·Qi(v)−
[
Ui(0) +

∫ v

0

Qi(x)dx
]

Let’s see (i) ⇒. Assume Qi(·) weakly increasing. Define Ti(v) = v · Qi(v) −∫ v

0
Qi(x)dx and Ui(v) =

∫ v

0
Qi(x)dx.

10A Lipschitz function is a function such that if it exists k ≥ 0, ∀x, y then |f(x)− f(y)| ≥ k · |x− y|

73



Take v > v′.

Ui(v)− Ui(v
′) =

∫ v

0

Qi(x)dx−
∫ v′

0

Qi(x)dx∫ v

0

Qi(x)dx ≥∫ v

0

Qi(v
′)dx

Because Qi(·) is weakly increasing. So:

Ui(v)− Ui(v
′) ≥

v ·Qi(v)− v′ ·Qi(v)

Ui(v) ≥ v ·Qi(v
′)−

[
v′ ·Qi(v

′)− Ui(v
′)
]

︸ ︷︷ ︸
≡ Ti(v)

Take v < v′.
Ui(v)− Ui(v

′) =∫ v

0

Qi(x)dx−
∫ v′

0

Qi(x)dx =

−
∫ v

0

Qi(x)dx ≥
∫ v

0

Qi(v
′)dx =

Qi(v
′)(v − v′)

To sum up, until now, we have fixed a game and a BNE. Further, we have written
Qi(v) and Ti(v) and shown that Ui(v) = Ui(0) +

∫ v

0
Qi(x)dx. Assume two games and

that the lower type has the same payoff (Ui(0)) and the same probability of taking the
good (

∫ v

0
Q(x)dx). Then, the expected payoff is the same in the two games.

An easier way to build an equilibrium strategy is the following. Assume that types
are i.i.d., that BNE are symmetric, and take the bidding strategy b : [0, v] → R. Then
we can write Ui(0) = 0, Qi(v) = F (v)n−1 and:

Ui(v) =

∫ v

0

F (x)n−1dx

Another way of writing an expected payoff is:

Ui(v) = [v − b(v)]F (v)n−1
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Therefore, we have:

[v − b(v)]F (v)n−1 =

∫ v

0

F (x)n−1dx =

vF (v)n−1 − b(v)F (v)n−1 =

∫ v

0

F (x)n−1dx =

− b(v)F (v)n−1 =

∫ v

0

F (x)n−1dx− vF (v)n−1 =

− b(v) =
(∫ v

0

F (x)n−1dx− vF (v)n−1
)
· 1

F (v)n−1
=

b(v) = v −
∫ v

0

F (x)n−1

F (v)n−1
dx =

b(v) = v − 1

F (v)n−1

∫ v

0

F (x)n−1dx

This is the optimal strategy for the bidder. Let’s see for the seller. We have seen
that the seller’s revenue can be written as:

R =
n∑

i=1

∫ ∞

0

Ti(v)fi(v)dv

But we have shown that:

Ti(v) = v ·Qi(v)−
[
Ui(0) +

∫ v

0

Qi(x)dx
]

Therefore, substituting in above and rearranging:

R =
n∑

i=1

[ ∫ v

0

v ·Q(v)fi(v)dv −
∫ v

0

(∫ v

0

Qi(x)dx)f(v)dv −
∫ v

0

Ui(0)fi(v)dv︸ ︷︷ ︸
≡ Ui(0)

)]

=

∫ v

0

(∫ v

0

Qi(x)dx
)
fi(v)dv

Using integration by parts, where:

g(v) =

∫ v

0

Qi(x)dx

We have: ∫ v

0

Qi(x)dx · Fi(v)
∣∣∣v
0
−
∫ v

0

Qi(v) · Fi(v)dv =∫ v

0

Qi(x)dx−
∫ v

0

Qi(v)Fi(v)dv =∫ v

0

Qi(v)(1− Fi(v))fv
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So:

R =
n∑

i=1

[ ∫ v

0

(
v − 1− Fi(v)

fi(v)

)
Qi(v)f(v)dv − Ui(0)

]
Notice that the revenue of the seller depends only on Ui(0) and F (v). This leads us

to an important result of auction theory, namely the Revenue Equivalence Principle.
This simply stated that given two games, if the payoffs of the lowest type are the same,
as well as their probability distributions, then the expected revenues for the seller are
the same. This means that the expected revenues of a First Price Auction and Second
Price Auction are the same.

Let’s see now the optimal auction. Let’s note that:
n∑

i=1

Ev

(
v − 1− Fi(v)

fi(v)

)
Ev−i

(
q(v1, . . . , v

′, 1 . . . , vn)|vi = v
)

︸ ︷︷ ︸
≡ Qi(v)

By the Law of Iterated Expectations,11 becomes:

E(v...,vi)

(
vi −

1− Fi(v)

fi(v)

)
Qi(v1, . . . , vn)

So we can write:

R = E(v1,...,vn)

[ n∑
i=1

(
vi −

1− Fi(vi)

fi(v)

)
qi(v1, . . . , vn)

]
−

n∑
i=1

Ui(0)

The seller wants to choose q1(·), . . . , qn(·), for all v1, . . . , vn, with
∑

qi(v1, . . . , vn) ≤ 1
that maximizes R. Assuming Ui(0) = 0 for all i, then fix v1, . . . , vn, the seller must
choose qi(v1, . . . , vn), . . . , qn(v1, . . . , vn) in order to:

max
qi(·)

∑
i=1

(
vi −

1− Fi(vi)

fi(v)︸ ︷︷ ︸
≡ Hi(vi)

)
qi(v1, . . . , vn)

Then, we can demonstrate the following result.

Proposition 16. Assume that H(·) is increasing for any player i. If there is an auction
such that for every realization (v1, . . . , vn), the good is awarded to player i if and only
if:

Hi(vi) ≥ Hj(vj) ∀j ̸= i

And Hi(v) ≥ 0, and the good is not awarded to anyone if Hi(vi) < 0,∀i, then this
auction is optimal (that is, it maximizes the seller’s revenues).

11This states that:
E[E(x|y)] = E(x)
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Proof. I only demonstrate that H(·) is increasing. If Hi(v) ≤ 0, then Qi(vi) = 0. If
Qi(vi) = Pr[Hi(vi) ≥ Hj(vj)],∀j ̸= i. Suppose that v′i > vi. Then Qi(v

′
i) = Pr[Hi(v

′
i) ≥

Hj(vj)], ∀j ̸= i.If b is greater than a, then it is even more probable it is greater than c.
Therefore Q(v′) ≥ Q(vi), and Q(·) is increasing because H(·) is increasing.

Two final observations can be made. First, a trivial game is one where each player
is required to reveal her type, and the seller constructs H(·) therefore. The good is
awarded to the player with the highest H(·) so that an equilibrium strategy is that of
telling the truth.

Second, in a symmetric environment, the good always goes to the player with the
largest evaluation, but this is not true in general. Take, for example, two players, one
with evaluation v1 = 1 and a second whose evaluation is v2 = 1.1 with probability 0.5
and evaluation v2 = 3.000.000 with probability 0.5. In this case, v2 always takes the
good, but the maximum the seller can charge is 1.1.

Mechanism Design: general principles

As seen, Mechanism Design concerns what we can achieve when agents have private
information. In general, we have an environment, G, with the following variables:

• a set of alternatives;

• a set of types, T1, . . . , Tn;

• a probability distribution function;

• a set of payoffs functions

Then we can write:
G = (A, T1, . . . , Tn, p, u1, . . . , un)

Notice that the set of alternatives is not the set of actions, because we are not in a game,
we must find a game. An example of A can be {0, 1} ×R in the case of just a buy/sell
situation, where 0 indicates that the good is not purchased and 1 otherwise. Therefore,
we write the payoff function as u(a, t), i.e., the payoff depends on the alternative and
the type.

Thinking of the seller (or the planner or the policy official) as a principal, the
principal is interested in implementing an outcome function:

f : T −→ ∆(A)

An example can be a social planner that wants to give the good to the type with
the largest evaluation. The problem is that the principal does not know the types of
the agents.
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The principal wants to develop a Mechanism (S, γ) where S = S1 × S2 · · · × Sn (Si

is the set of actions of the players) and:

γ : S −→ ∆(A)

The Mechanism induces a game, that is, what the players can do and how the outcome
is reached.

We can define a Bayesian Game as follows:

G(S,γ) =
(
T1, . . . , Tn, p, S1, . . . , Sn, u

(s,γ)
1 , . . . , u(s,γ)

n

)
And the payoff function as:

u
(s,γ)
i (s, t) =

∑
a∈A

γ(a|s)ui(a, t)

Where S = S1, . . . , Sn) and t = t1, . . . , tn.
We can define pure strategies as:

hi : Ti −→ Si

And mixed strategies as:
σi : Ti −→ ∆(Si)

Then we can write:
u
(s,γ)
i (σ1(t1), . . . , σn(tn), t1, . . . , tn) =∑
s∈S

(∏
σj(sj|tj)

)
γ(a|s)ui(a, t) =∑

s∈S

(∏
σj(sj|tj)

)
u
(s,γ)
i (s, t)︸ ︷︷ ︸

γ(a|s)ui(a, t)

A particular class of games is called Direct Mechanism (or Direct-relation Mecha-
nism). These are games where Si = Ti, ∀i. That is, where the set of actions is equal to
the set of types. A Mechanism of this type is the game "tell me your type." An auction
clearly does not belong to this class. Indeed it is an example of an indirect mechanism.

Then, we have the following definitions.

Definition 6.6 (Implementability). An outcome function f is implementable via a
certain solution concept (a Bayesian Nash Equilibrium or Strategic Dominance) if there
exists a mechanism (S, γ) such that (f(t))t∈T ) is the optimal outcome of G(s,γ) using
the corresponding solution concept

Definition 6.7. f is implementable in Bayesian Nash Equilibrium if there exists a
mechanism (S, γ) and a Bayesian Nash Equilibrium σ∗ of G(S,γ) such that ∀a ∈ A and
∀t = (t1, . . . , tn) ∈ T ∑

s∈S

( n∏
j=1

σ∗
j (sj|tj)

)
γ(a|s) = f(a|t)
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Notice that f is given (what we have to show). The left term refers to the probability
that player j plays s given tj

Defining F as the set of outcome functions, a natural question is to ask if it is
implementable. This question has a simple answer due to an important result called
the Revelation Principle (due, among the others, to Roger Myerson).

Let’s define another important notion, that of Incentive Compatibility.

Definition 6.8. (Incentive Compatibility) Given a direct mechanism (T, µ), µ : T −→
∆(A) is incentive compatible if true-telling is a Bayesian Nash Equilibrium, that is,
∀i, ∀t, t′ ∈ T :∑
t−i∈T−i

p(t−i|ti)
∑
a∈A

µ(a|ti, t−i)ui(a, ti, t−i) ≥
∑

t−i∈T−i

p(t−i|ti)
∑
a∈A

µ(a|t′i, t−i)ui(a, ti, t−i)

Therefore, we can state the Revelation Principle.

Proposition 17 (Revelation Principle). f : T −→ ∆(A) is implementable in Bayesian
Nash Equilibrium if and only if (T, f) is incentive compatible.

Proof. (⇒) If we implement f with the direct mechanism, we can do that for every
mechanism. This is obvious. Let’s look at the next part.

(⇐) If we implement f with any mechanism, we can do it with the direct mechanism.
Suppose f is implementable and σ∗ is a Bayesian Nash Equilibrium of G(s,γ) such that
∀a ∈ A,∀t ∈ T : ∑

s∈S

(∏
σ∗
j (sj|tj)

)
γ(a|s) = f(a|t)

Now we construct a Direct Mechanism (T, µ), ∀a, ∀t

µ(a|t) =
∑
s∈S

(∏
σ∗
j (sj|tj

)
γ(a|s)

Clearly µ(t) = f(t), ∀t, µ(t) ∈ ∆(A). We must show the Incentive Compatibility of
(T, µ), that is, ∀i,∀ti, t′i ∈ Ti∑

t−i∈T−i

p(t−i|ti)
∑
a∈A

µ(a|ti, t−i)ui(a, ti, t−i)

Since µ(a|t) =
∑

s∈S

(∏
σ∗
j (sj|tj

)
γ(a|s), we can write:∑

t−i∈T−i

p(t−i|ti)
∑
a∈A

(∑
s∈S

(∏
σ∗
j (sj|tj)

))
γ(a|s)ui(a, ti, t−i)

Since
∑

s∈S

(∏
σ∗
j (sj|tj)

)
γ(a|s)ui(a, ti, t−i) ≡ u

(s,γ)
i (σ∗

1(t1), . . . , σ
∗
i (ti), σ, σ

∗
n(tn), ti, t−i)

we can write: ∑
t−i∈T−i

p(t−i|ti)u(s,γ)
i (σ∗

1(t1), . . . , σ
∗
i (ti), σ, σ

∗
n(tn), ti, t−i)

79



Since in equilibrium, we must have σ∗
i (ti) ≥ σ∗

i (t
′
i), this is greater and equal than:∑

t−i∈T−i

p(t−i|ti)u(s,γ)
i (σ∗

1(t1), . . . , σ
∗
i (t

′
i), σ, σ

∗
n(tn), ti, t−i) =∑

t−i∈T−i

p(t−i|ti)
∑
a∈A

(∑
s∈S

σ∗
i (t

′
i)
∏
j ̸=i

σ∗
j (sj|tj)

)
γ(a|s)ui(a, ti, t−i) =∑

t−i∈T−i

p(t−i|ti)
∑
a∈A

µ(a|t′i, t−i)ui(a, ti, t−i)

This concludes the proof.

Therefore, we can redefine Implementability in Bayesian Nash Equilibrium as fol-
lows.

Definition 6.9. (Implementability in Bayesian Nash Equilibrium) Given a situation
G = (A, T1, . . . , Tn, p, u1, . . . , un), f : T −→ ∆(A) is implementable in Bayesian Nash
Equilibrium if and only if (T, f) is Incentive Compatible, that is, ∀i, ∀ti, t′i:∑
t−i∈T−i

p(t−i|ti)
∑
a∈A

f(a|ti, t−i)ui(a, ti, t−i) ≥
∑

t−i∈T−i

p(t−i|ti)
∑
a∈A

f(a|t′i, t−i)ui(a, ti, t−i)

What the revelation principle states is that to implement some outcome, one must
check only for incentive compatibility, that is, restrict the search only to those mecha-
nisms where they are willing to reveal their private information.

However, these equilibria are not necessarily unique. If true-telling is weakly domi-
nant, but it is not a Bayesian Nash Equilibrium, then it is said to be Strategy-proof.

Finally, notice that in some situations, it can be assumed that participation is
voluntary. Therefore, a further condition is needed, that is, individual rationality:
namely, given a reservation payoff for all i, wi(t) ∀ti, we have:∑

t−i∈T−i

p(ti|t−i)
∑
a∈A

f(a|ti, t−i)ui(a, ti, t−i) ≥ wi(t)
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