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1 The Expenditure Minimization Problem
The expenditure minimization problem (EMP) is the dual of the Utility Maximization
Problem (UMP). Then, when p >> 0 and u > u(0):

min
x ≥ 0

p · x

s.t. u(x) ≥ u
(1)

Whereas the UMP was about the maximum amount of x needed to maximize utility,
under a budget constraint, the EMP instead is about the minimum amount of expendi-
ture needed to reach a definite level of utility. Therefore, the optimal bundle x∗ is the
bundle which solve the EMP, that is, that minimize p ·x subject to a utility constraint.
In other words to solve the EMP means to seek the minimum amount the consumer
must spend at price p to get for himself utility level u.

Geometrically, it is the point of the set {x ∈ Rl
+ : u(x) ≥ u} which lies on the least

possible budget line associated to a definite price vector (see Figure 1).
As the EMP is the dual of the UMP, the following result makes apparent the rela-

tionship between them.

Proposition 1 (3.E.1 (MWG). Suppose u(.) is a continuous utility function represent-
ing ⪰ L.N.S. and defined on X = Rl

+, and that price vector is p >> 0. Then:

1. If x∗ is optimal in the UMP when w > 0, then x∗ is optimal too in the EMP,
when the required utility level is u(x∗), and the minimized expenditure level in this
EMP is w

2. If x∗ is optimal in the EMP when the required utility level is u > u(0), then x∗ is
optimal in the UMP when wealth is p · x∗. Moreover, the maximized utility level
in this UMP is u
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Figure 1: The Expenditure Minimization Problem

Proof. 1. We can show this by contradiction. Assume x∗ is not optimal in the EMP.
Then, it exists a x′ such that u(x′) > u(x∗), and p ·x < p ·x∗ ≤ w. Still, however,
⪰ are LNS, so that we can find an x′′ such that u(x′′) > u(x′) and p ·x′ < w. But
then x′′ ∈ Bp,w and u(x′′) > u(x∗). This contradicts the assumption of x∗ being
optimal in the UMP. Finally, since x∗ solves the UMP when prices are p, then
p · x∗ = w.

2. Since u > u(0), then x∗ > 0 and p · x∗ > 0. Suppose x∗ is not optimal. Then
there exist a x′ > x∗ such that u(x′) > u(x∗) and p · x′ < p · x∗. Take a bundle
x′′ = αx′ (with α ∈ (0, 1)). By continuity of u(.), if α ∼ 1, then u(x”) > u(x∗)
and p · x” < p · x∗. But this contradicts the optimality of x∗ in the EMP. Then
x∗ must be optimal in the UMP when w = p · x and maxx u = u(x∗).

Note finally that a solution to the EMP exists always under very general conditions:
the constraint set must be non empty.

2 The Expenditure Function
The value of the EMP can be determined by the function e(p, u), called the expenditure
function. Its value for any pair (p, u) is simply p · x∗, where x∗ is the solution to the
EMP. Thus e(p, u) is the minimum expenditure required to achieve utility u at prices
p. A way of writing this is the following:
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e(p, u) = min{p · x : U(x) ≥ u, x ≥ 0}

The basic properties of this function are given in the following proposition.

Proposition 2 (3.E.2 (MWG). Suppose u(.) is a continuous utility function represent-
ing ⪰ L.N.S. and defined on X = Rl

+. Then e(p, u) is:

1. Homogenous of Degree one in p

2. Strictly increasing in u and non-decreasing in pl, ∀l

3. Concave in p

4. Continuous in p and u

Proof. 1. To see that e(p, u) is HDZ in p note that in the EMP, if p change, utility is
unaffected. In other words, the EMP now becomes: min α·x subjcet to u(x) ≥ u.
If x∗, then e(αp, u) = αp · x∗ = αe(p, u).

2. e(p, u) being not strictly increasing in u means that if u increases, then the value
of e(p, u) does not. To see this, assume x′ and x′′ as optimal consumption bundles
for the utility levels u(x′) and u(x′′), where u(x′′) > u(x′) and p · x′′ < p · x′.
Take a bundle x̂ = αx′′ (with α ∈ (0, 1)). By continuity of u(.), if α ∼ 1, then
u(x̂) > u(x′) and p · x̂ < p · x′. But then, x′ is not optimal in the EMP.

Let’s see now e(p, u) being not decreasing in princes. This means that when p
decrease, e(p, u) does not. Assume p′′ and p′, where p′′l ≥ p′l and p′′k = p′k∀l ̸= k.
Let x′′ be an optimizing consumption bundle in the EMP for prices p′′. Then
e(p′′, u) = p′′ · x′′ ≥ p′ · x′ = e(p′, u)

3. To see concavity, assume ū and p′′ = αp + (1 − α)p′, (with α ∈ [0, 1]). Suppose
x∗ is optimal in the EMP, at prices p′′. Then:

e(p′′, ū) = p′′ · x∗ =

[αp+ (1− α)p′]x∗ =

αp · x∗ + (1− α)p′ · x∗ ≥
≥ αe(p, ū) + (1− α)e(p′, ū)

(2)

Whereas: αp·x∗+(1−α)p′x∗ ≥ αe(p, ū)+(1−α)e(p′, ū), αe(p, u∗)∗(1−α)e(p′, u∗),
and u∗ = u(x∗) > ū

Intuitively, the meaning of concavity is simply that if there is an optimal consump-
tion bundle in the EMP, whose value is given by e(p, u), if p changes, so that the new
price vector is p′, then the upper bound of the new consumption bundle is given by
p′ · x, a linear transformation of p · x.

3



Note, finally, that there is a strong relation between the Expenditure Function e(p, u)
and the Indirect Utility Function v(p, w). That is, for any p >> 0, w > 0 and u > u(0),
then:

• e(p, v(p, w)) ≡ w

• v(p, e(p, u)) ≡ u

These conditions mean that for a fixed price vector p, e(p, .) and v(p, .) are one the
inverse of the other.

3 The Hicksian Demand Function
The set of optimal consumption bundles in the EMP is known as the Hicksian Demand
Correspondence (or Function, if univalued), defined as h(p, u) ∈ Rl

+.

h(p, u) = argmin
x

n∑
i=1

p · x s.t. u(x) ≥ x (3)

In other words, h(p, u) is the set of consumption bundles that the consumer would
purchase at prices p is she wished to minimize her expense but still achieve utility u.

Then, exactly like the Walrasian Demand, x(p, w) is the solution to the UMP, at
given (p, w), h(p, u) is the solution to the expenditure minimization problem at given
(p, u).

The Hicksian Demand has three basic properties:

Proposition 3 (3.E.3 (MWG)). Suppose u(.) is a continuous utility function repre-
senting ⪰ L.N.S. and defined on X = Rl

+. Then, for any p >> 0 h(p, u) is:

1. Homogenous of Degree Zero in p

2. No excess utility: ∀x ∈ h(p, u), u(x) = u

3. Convexity/uniqueness: if ⪰ is convex, then h(p, u) is a convex set; and if ⪰ is
strictly convex, so that u(.) is strictly quasi-concave, then there is a unique element
in h(p, u).

Proof. 1. Since the constraint is the same in the EMP for (αp, x) and (p, x), then:

min
u(x)≥u

αp · x = α min
u(x)≥u

p · x

2. Suppose that there is some x ∈ h(p, u) such that u(x) > u ≥ u(0). Take a bundle
x′ = αx, with (α ∈ (0, 1). Then p · x′ < p · x, and since u(.) is continuous (by the
Intermediate Value Theorem) there is an α such that u(x′) ≥ u. This contradicts
the assumption that x ∈ h(p, u).
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3. Note that h(p, u) = {x ∈ Rl
+ : u(x) ≥ u} ∪ {x : p · x = e(p, u)} is the intersection

to two convex sets, and hence is convex. If preferences are strictly convex, x, x′ ∈
h(p, u), then for α ∈ [0, 1], x′′ = αx+ (1− α)x′ ≻ x and p · x′′ = e(p, u). But this
contradicts "no excess utility."

We can relate the Hicksian Demand and the Walrasian (or Marshallian) Demand
as follows:

• h(p, u) ≡ x(p, e(p, u)) [Recall that e(p, u) ≡ e(p, v(p, w)) ≡ w]

• x(p, w) ≡ h(p, v(p, w)) [Recall that v(p, w) ≡ v(p, e(p, u)) ≡ u]

Another result allows us to link h(p, u) and the Compensated Law of the Demand. In
a nutshell, demand and prices move in opposite directions for prices changes that are
accompanied by Hicksian Wealth Compensations. This means that hk(p, u) is decreasing
in pk, i.e. Hicksian Demand is always downward sloping. Note that this is not always
true in the case of the Walrasian Demand (even if it is typically the case). For example
we can find such situations like those involving Giffen Goods (the prices rises and the
demand rises too).

Proposition 4 (3.E.4. (MWG)). Suppose u(.) is a continuous utility function repre-
senting ⪰ L.N.S. and defined on X = Rl

+, and h(p, u) is uni-valued, for any p >> 0.
Then h(p, u) satisfies the Compensated Law of Demand. For all p and p′:

(p′ − p) · [h(p′, u)− h(p, u)] ≤ 0 (4)

Proof. In the EMP, at prices p, h(p, u) is optimal. This means that it allows the
consumer to attain the same level of utility, but with a lesser expenditure. That is:

p′ · h(p′, u) ≤ p′ · h(p, u)
p · h(p, u) ≤ p · h(p,′ u)

(5)

Subtracting these equations yields the equation (4). Indeed:

p′ · h(p′, u)− p′ · h(p, u)− p · h(p, u) + p · h(p,′ u) =
(p′ − p) · [h(p′, u)− h(p, u)] ≤ 0

(6)

We can see why the Hicksian Demand is always downward sloping in Figure 2. The
original prices for x1 and x2 determine a bundle set Bp,w and h(p, u) is hA. As prices
change, to reach the same utility, the new bundle set becomes Bp′,w. So then, the new
h(p, u) is hB, which is still on the Indifference Curve I. This because the Hicksian
Demand refers to a EMP problem, so then, given an utility level, the rational consumer
must find the best way of reaching it.
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x2

I = {x ∈ R2 : u(x) = x}

hB = h(p′u)

hA = h(p, u)

B(p′, w)B(p, w)

Figure 2: Changes in the Hicksian Demand as prices change

In the Walrasian Demand setting, instead the problem is different, since the con-
straint is the budget set. If prices change, and so does the budget set, the new optimal
x∗ lies on a different indifference curve.

Finally there is an important result that allows us to recover easily hi(p, u) from the
Expenditure Function e(p, u), called Shephard’s Lemma.

Proposition 5 (Shephard’s Lemma). Suppose that u(.) is a continuous utility function
representing L.N.S. preference ⪰ and suppose that h(p, u) is a function. Then, the
e(p, u) is differentiable in p, and for all i = 1 . . . , n

∂e(p, u)

∂pi
= hi(p, u) (7)

Proof. As seen above, e(p, u) is the value function associated to the EMP. Therefore,
we can write:

min
x ≥ 0

p · x

s.t. u(x) ≥ u

Taking the Lagrangian of the equation above gives:

L = p · x+ λ(u− U(x)) (8)

Let’s apply now the Envelope Theorem1. Then we can write the derivative of e(p, u)
as being equal to the derivative of L for any x∗ in h(p, u).

1This theorem states the following:
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∂e(p, u)

∂pi
=

∂L

∂pi
= x∗

i ∀x∗ ∈ h(p, u) (10)

Where x∗
i is the Hicksian Demand for good xi

Let’s recap the important identities that link the e(p, u), the v(p, w), the x(p, w)
and the h(p, u). Recall that the optimal x∗ in the UMP is the same in the EMP.
Furthermore:

• e(p, v(p, w)) ≡ w The minimum expenditure necessary to reach utility v(p, w) is
m

• v(p, e(p, u)) ≡ u. The maximum utility from income e(p, u) is u

• xi(p, w) ≡ hi(p, v(p, w)) The Walrasian Demand at income w is equal to the
Hicksian Demand at utility v(p, w).

• hi(p, u) ≡ xi(p, e(p, u)) The Hicksian Demand at utility u is the same as the
Walrasian Demand at income e(p, u).

In particular the last result is important, since it shows that the Hicksian Demand
is equal to the Walrasian Demand at the minimum income necessary, at the given
prices, to achieve the desired level of utility. Therefore, the Hicksian Demand is sim-
ply the Walrasian Demand function for the various goods if the consumer’s income is
"compensated" so as to achieve some target level of utility.

From the identities above it is possible to derive a result similar to the Shephard’s
Lemma, but for Utility Maximization and Walrasian Demand: the Roy’s Identity. This
offers a method of deriving the Walrasian Demand Function of a good for some consumer
from the Indirect Utility Function, v(p, w) of that consumer.

Proposition 6 (Roy’s Identity). Let u(.) be continuous and representing LNS and
strictly convex ⪰, and u(.) is differentiable. Then:

xi(p, w) = −
∂v(p,w)

∂pi
∂v(p,w)

∂w

for i = 1, . . . , k (11)

Theorem 3.1 (Envelope Theorem). For Θ ⊆ R, let f : X × Θ → R be a differentiable function, let
v(θ) = maxx∈Xf(x, θ) and let X∗(Θ) = {x ∈ X : f(x, θ) = V (Θ)} If V is differentiable at Θ then, for
any x∗ ∈ X∗(Θ),

V ′(Θ) =
∂f(x∗, θ)

∂θ
(9)

Roughly speaking this theorem states that, if we change some parameters of the objective, changes
in the optimizer do not contribute to the change in the objective function
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Proof. We know that if x∗ is optimal in the UMP, then it is optimal also in the EMP.
Therefore we can write :

x(p, w) ≡ h(p, u)

at given p, w, u. Furthermore, we know also that:

u ≡ v(p, e(p, u))

That is, no matter what the prices are, if the consumer has the minimal income to
get utility u, at prices p, then the maximal utility is u.

We can differentiate with respect to p and obtain:

∂v(p, e(p, u))

∂pi
+

∂v(p, e(p, u)

∂pi
· ∂e(p, u)

∂pi
= 0

Note that:

∂v(p, e(p, u)

∂pi
· ∂e(p, u)

∂pi
≡ ∂v(p, w)

∂w
· ∂e(p, u)

∂pi

and

∂e(p, u)

∂pi
≡ hi(p, u) ≡ xi(p, w)

These identities hold for all p, w. Therefore, rearranging, we have:

− ∂v(p, w)

∂w
xi(p, w) =

∂v(p, w)

∂pi
=

xi(p, w) = −
∂v(p,w)

∂pi
∂v(p,w)

∂w

(12)

4 The Slutsky Equation
At this point one could question what is the meaning of the results above, and more
in general, of all the Consumer Theory in such a mathematical fashion. The object of
consumer theory must be to analyze how a rational consumer reacts when he faces some
changing in prices and wealth. There are some results (listed below) which describe the
rational consumer’s behavior with regard to her Walrasian Demand. However, in order
to fully assess this point, it is not sufficient to rest upon the UMP. Indeed, the total
change can be decomposed in two parts, one that involves the Walrasian Demand, and
one that involves the Hicksian Demand.

Note however, that the Hicksian Demand is not directly observable (one of its pa-
rameters is u). Still h(p, u) is computable through the Walrasian Demand, which is
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observable (in principle). We have seen that there are some important results to re-
cover Hicksian Demand and Walrasian Demand from the Expenditure Function and
Indirect Utility (i.e. the Shephard’s Lemma and the Roy’s identity). It is important
now to relate h(p, u) and x(p, w) in a more general way, in order to make possible a
detailed analysis of how a change in the prices affects the change in the demand.

It is easy to have some intuition on why changes in prices or wealth have some effect
on the demand. For what concerns the Walrasian Demand, i.e. the solution to the
UMP for all prices and income levels, there are some important results worth to be
briefly listed and recapped.

The Wealth Effects indicates how the demand changes when wealth changes. This
is represented by the following (1× L) vector:

Dwx(p, w) =


∂x1(p,w)

∂w...
...

∂xL(p,w)
∂w

 ∈ RL (13)

The Price Effects instead shows how the change of the price of one good affects the
demand for all the goods. These effects are represented by the following square matrix:

Dpx(p, w) =


∂x1(p,w)

∂p1
. . . ∂x1(p,w)

∂pL...
...

∂xL(p,w)
∂p1

. . . ∂xL(p,w)
∂pL

 (14)

Finally, these Substitution Effects (i.e. Wealth Effects and Price Effects) can be
expressed by the following square matrix called Slutsky Matrix:

S(p, w) =


∂x1(p,w)

∂p1
+ ∂x1(p,w)

∂w
x1(p, w) . . .

∂x1(p,w)
∂pL

+ ∂x1(p,w)
∂w

xL(p, w)
...

...
∂xL(p,w)

∂p1
+ ∂xL(p,w)

∂w
xL(p, w) . . .

∂xL(p,w)
∂pL

+ ∂xL(p,w)
∂w

xL(p, w)

 (15)

The results above make clear a very simple and intuitive fact. Assume a change
in prices, say a raising of pk. Then the consumer faces two different situations: first,
the good k is more expensive relative to other goods, so one can expect a decline in
k’s consumption, and depending from the relation between k and other goods, it could
be the case that even their consumption falls. In any case, there is a "substitution",
or "cross-substitution" effect. Second, the consumer’s real income has declined. If k
is more expensive, the more it raises, the less can be spent on the other goods of the
bundle. The issue is how to explore this result analytically.

One way of thinking to this problem is how to compensate the consumer for the
increase of pk by giving her some ∆w so that her real income is the same as before.
This allows us to isolate the effect of a shift in relative prices form the effect a change
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Figure 3: Slutsky and Hicksian Compensation

in prices has on the real income. The problem is now of determining how much ∆w
must be. There are two ways of answering this question:

• Slutsky Compensation is that ∆wS such that the consumer can buy back her
original old optimal bundle x. This can be written as w + ∆ws. Note however,
that the consumer can now choose a different bundle, since the old one can be no
more optimal.

• Hicksian Compensation is that change in wealth, ∆wh, which allows the consumer
to maintain her utility. Still note that, as seen before, the Hicksian Demand
satisfies the Compensated Law of Demand, and therefore, as apparent in Figure
2, Hicksian Demand is a form of compensated demand.

These compensations are represented graphically in Figure 3. The consumer’s orig-
inal demand, at (p, w) is xA. Then, the price of x2 rises, so that the new budget set
is B(p′, w). To compensate the consumer in order to stay on the original indifference
curve, to her new real income must be added ∆wh (Hicks Compensation) so to reach
the red dashed line (the Hicksian Compensation Budget Line). The new demand is xB.
In order instead of making the old demand xA allowable, the consumer must be com-
pensated with ∆ws (Slutsky Compensation) to reach the dashed blue line (the Slutsky
Compensation Budget Line). Still note that xA is not anymore an optimal bundle, so
that the new demand is xC .

This graph makes it apparent that a change in the price of x2 affects the demand
of x1 in a way that involves both the Hicksian Compensantion and Slutsky. From the
result above we can write the fundamental Slutsky Equation.
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Proposition 7 (The Slutsky Equation (MWG 3.G.3)). Suppose that u(.) is a contin-
uous utility function representing a L.N.S. and Strictly Convex ⪰ defined on X = RL

+.
Then, for all (p, w) and u = v(p, w) we have:

∂hl(p, u)

∂pk
=

∂xl(p, w)

∂pk
+

∂xl(p, w)

∂w
xk(p, w) (16)

Proof. Recall that: w ≡ e(p, v(p, w)) and h(p, u) ≡ x(p.e(p, u)). Differentiating with
respect to pk we have:

∂hl(p, u)

∂pk
=

∂xl(p, e(p, u)

∂pk
+

∂xl(p, e(p, u))

∂pk

∂e(p, u)

∂pk

Still, ∂xl(p,e(p,u))
∂pk

≡ ∂xl(p,w)
∂w

and, by Shephard’s Lemma, ∂e(p,u)
∂pk

≡ hk(p, u) and, finally
hk(p, u) ≡ xk(p, w).

Then we have the result:

∂hl(p, u)

∂pk
=

∂xl(p, w)

∂pk
+

∂xl(p, w)

∂w
xk(p, w)

The importance of the Slutsky Equation is that it decompose the demand change
induced by a price change into two separate effects: the Substitution Effect and the
Income Effect.

∂hl(p, u)

∂pk︸ ︷︷ ︸
Substitution Effect

=
∂xl(p, w)

∂pk︸ ︷︷ ︸
Total Effect

+
∂xl(p, w)

∂w
xk(p, w)︸ ︷︷ ︸

Income Effect

Furthermore (16) can be arranged in a more economic meaningful way as follows:

∂xl(p, w)

∂pk︸ ︷︷ ︸
Total Effect

=
∂hl(p, u)

∂pk︸ ︷︷ ︸
Substitution Effect

− ∂xl(p, w)

∂w
xk(p, w)︸ ︷︷ ︸

Income Effect

The economic intuition behind the Slutsky Equation is that if the price of good k
increases, this has two effects on the demand for good l. The Substitution Effect, that
is a movement along the original indifference curve, since the utility is fixed (i.e. Hick-
sian Demand refers to a EMP). And an Income Effect, that is the movement from one
indifference curve to another. A change in prices determines a change in income, and
therefore in the size of the budget line, which represents the constraint of the UMP.

These effects are represented graphically in Figure 4. A consumer faces an initial
price-wealth situation (p, w) and therefore a budget set Bp,w.Then he chooses xA. Let’s
assume now a change in the price of x1, so then the new budget set is Bp′,w. The new
optimal consumption is xC . But this move from xA to xC can be decomposed in two
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different parts. The Substitution Effect, which affects the Hicksian Demand. Since, by
definition, h(p, u) solve the EMP constrained to u(x), the new demand must be on the
same indifference curve. But since the lower price of x1 makes it possible to reach an
higher indifference curve, that is, new demand is xC .

x1

x2

xA

xC

xB

SE IE
Total Effect

Bp,w

Bp′w

Figure 4: Total Effect, Substitution Effect and Income Effect

The importance of the Slutsky Equation is that it allows us to view comparative
statics in prices as the sum of an income effect and a substitution effect. However, in
order to fully assess this point one has to look at these effects in a more general way,
that is, by rewriting equation 16 in matrix form. Indeed note that its right part is an
element of the so-called Slutsky Matrix (see 15).

Dph(p, u) =


∂h1(p,u)

∂p1
. . . ∂h1(p,u)

∂pL...
...

∂hL(p,u)
∂p1

. . . ∂hL(p,u)
∂pL

 =


∂x1(p,w)

∂p1
+ ∂x1(p,w)

∂w
x1(p, w) . . .

∂x1(p,w)
∂pL

+ ∂x1(p,w)
∂w

xL(p, w)
...

...
∂xL(p,w)

∂p1
+ ∂xL(p,w)

∂w
xL(p, w) . . .

∂xL(p,w)
∂pL

+ ∂xL(p,w)
∂w

xL(p, w)

 = (S(p, w)

(17)

The advantage of this matrix form is that it shows the own-price substitution effects
as well as the cross-price substitution effects. Dph(p, u) is the matrix of price effects
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for the Hicksian Demand, which is, roughly speaking, the equivalent, for the Hicksian
Demand of the matrix of the Price Effects for the Walrasian Demand. However there
are also important differences. Since we know that we can recover hi(p, u) simply differ-
entiating the expenditure function e(p, u), this means that if we are at an optimum in
the EMP, the changes in demand caused by price changes do not affect the consumer’s
expenditure. Furthermore, if h(p, u) is continuously differentiable at (p, u), we can state
this important result concerning the properties of Dph(p, u).

Proposition 8. Suppose that u(.) is a continuous utility function representing L.N.S.
and strictly convex preferecnces relation ⪰ defined on X = RL

+. Suppose also that
h(p, u) is continuosly differentiable at (p, u). Then:

1. Dph(p, u) = D2
pe(p, u)

2. Dph(p, u) is a Negative Semidefinite Matrix

3. Dph(p, u) is a symmetric matrix

4. Dph(p, u)p = 0

Proof. 1. This follows from Shephard’s Lemma by differentiation

2. This properties, as well as 3 derive from the fact that since e(p, u) is continuous
and concave, its Hessian Matrix is symmetric (by the properties of the Hessian
Matrices) and Negative Semidefinite (since the function is concave).

3. This derives from the fact that h(p, u) is Homogenous of Degree Zero in p. Then
h(αp, u) = h(p, u), and therefore h(αp, u) − h(p, u) = 0. Taking the derivative
with respect to α we have ∂h(αp,u)

∂α
p = 0.

The economic meaning of Negative Semidefiniteness of Dph(p, u) is that if the price
of i rises, then the change in hi(p, u) is not positive (i.e. ∂hi(p,u)

∂pi
≤ 0). This is a

differential form of the law of the demand.2 The symmetry of Dph(p, u) is a direct
consequence of its being an Hessian Matrix, but its economic meaning is somewhat
"fuzzy". Indeed, it means that the effect of a small increase of the price of good i on
the quantity demanded of good j is identical to the effect of a small change of the price
of j on the quantity demanded of i.

We can present an example of comparative statics (taken from: Kreps, 1990, p.
61). Let’s first recap the different typologies of goods, with respect to wealth and price
effects:

• Good j is said to be inferior if its wealth-derivative is less than zero: ∂xj

∂w
< 0

2Because in the Hessian Matrix in the main diagonal we find all the second-order derivatives, and
in the Negative Semidefinite Matrix these elements are always non-positive
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• It is normal if its wealth-derivative is greater and equal than zero: ∂xj

∂w
≥ 0.

• It is ordinary if its price-derivative is less than zero: ∂xj

∂pj
< 0.

• It is Giffen if its price-derivative is greater than zero: ∂xj

∂pj
> 0.

Let’s consider the case of a Giffen good. Since a good is Giffen with respect to its
own price-change, we have to look for those value across the main diagonal in all the
matrices involved. So, in Slutsky Equation’s terms:

∂xj(p, w)

∂pj
=

∂hj(p, u)

∂pj
− ∂xj

∂w
· xj(p, w)

∂xj

∂pj
must be greater than zero. But we know that ∂hj

∂pj
is non positive, since it is an

element of the main diagonal of an Hessian Negative Semi-Definite Matrix. Therefore,
the only possibility for j’s own price-derivative of being > 0 is that j is also inferior,
i.e. that ∂xj

∂w
< 0. But this is not sufficient. j must be sufficiently inferior so that its

income effect overcomes the substitution effect. This could be the case if j occupies a
great share in the consumer’s consumption bundle.

Furthermore, from this matrix it is easy to identify different cross-price effects.
Indeed it is sufficient to look at the sign of cross-derivatives. Then two goods, l, k are
substitutes at (p, u) if ∂hl

∂pk
≥ 0; and complementary if ∂hl

∂pk
≤ 0. Finally, since Dph(p, u) is

Negative Definite, and therefore ∂hi

∂pi
≤ 0, property 4 of Proposition 8 ensures that there

must be a good k for which ∂hl(u,p)
∂pk

≥ 0, i.e. every good has at least one substitute.
There is another interpretation of the Slutsky Equation. Indeed it describes the

relationship between the slope of the Hicksian demand curve and the Walrasian demand
curve at prices p. This relationship is represented in Figure 5, for the case of a Normal
Good. This represents demand curve for good 1, holding all other prices fixed. Note that
the two demands are equal when p1 is p01. Furthermore, in the figure, Walrasian demand
and Hicksian demand refer to the same utility level, i.e. h1(p, v(p, w)) = x1(p, w)) (see p.
7 of these notes). From the figure it is apparent that the slope of the Walrasian demand
curve is less negative than the slope of the Hicksian demand for that price. That is the
Hicks demand curve is less responsive to price changes than is the Walrasian demand
curve. At level p01 there is no income compensation. When p > p01 income compensation
is positive, because the individual needs help to remain an the same utility level. Finally,
at p < p10, the income compensation is negative, to prevent an increase in utility from
a lower price.

To understand this, let’s see the Slutsky equation again. Recall that own-price
derivative is negative by definition for the Hicksian demand. In order of the Walrasian
demand having a lesser slope than the Hicksian, the income effect must be positive.
Therefore, good 1 must be normal. In the case of inferior goods, the relationship
is reversed: the Hicksian demand is less negatively steeper than than the Walrasian
demand.
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Quantity of good 1

p1
x1(p, w)

h1(p, u)

p01

x1(p, w) = h1(p, u)

Figure 5: The Walrasian and the Hicksian demand for a Normal Good

5 Welfare Evaluation of price changes
Economists want to measure how consumers are affected by changes in prices and
wealth. So far we have seen how consumers react to these changes. The issue is now to
provide a way of measuring it. The simplest way of addressing this problem is by the
notion of Consumer Surplus (see below). However this measure is mainly imprecise,
and only in specific circumstances (addressed below) it can be considered exact.

The first problem to deal with is that we cannot really measure how utility changes
as effect of some policy. To simplify, we consider a consumer with rational, continuous
and Locally Non-Satiated ⪰, and furthermore, that both e(p, u) and v(p, w) are differ-
entiable. Besides, the only focus will be on a price change, so that the wealth is fixed,
and it is evaluated the impact of a welfare change from p0 to p1.

Let take (p0, w) and (p1, w), that is the pair representing the original prices and
wealth, and the pair representing new prices and the same wealth. A simple way of
seeing it is to compute the variation in the consumer’s indirect utility:

v(p1, w)− v(p0, w)

Above there is, intuitively, the welfare change. If the difference between utility at
new prices and old wealth and old prices and old wealth is positive, then, we could
presume, the consumer has benefitted from this change.

However, we don’t know what utility is, and the way we constructed utility func-
tions aimed only to make ordinal utility representable. A possible getaway from this
point is that of linking utility to money, using what is usually referred to as Money
Metric Indirect Utility, which is constructed starting from the e(p, u), and has the same
properties (see Proposition 2).
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Thus, choosing a price vector p̄ >> 0, and an indirect utility function v(p, w), we
can write the following:

e(p̄, v(p, w))

Therefore, we can write the utility difference as follows:

e(p̄, v(p1, w))− e(p̄, v(p0, w))

This function gives how much money are needed, at prices p̄ to reach utility v(p, w).
In other words, this function measure how much income the consumer would need, at
prices p̄ to be as well off as she would be facing prices p and income w.

Assume that we are facing a change of prices from p0 to p1 (so that p̄ can be either
the new prices or the old one). Then, the question is: what is the impact on a given
consumer, with an income w, of the change of p0 to p1?

Two measures of compensation can be employed. These are the Compensating
Variation and the Equivalent Variation. We can define both of them in terms of e(p, u)
and v(p, w). Recall that v(p, w) ≡ u.

So then, we can write CV as follows:

CV (p0, p1, w) = e(p0, u0)− e(p1, u0) = w − e(p1, u0) (18)

Since e(p0, u0) = e(p1, u1) = w (and v(p1, w) = u1 and v(p2, w), if the prices change
from p0 to p1, CV tells how much we will have to compensate, or charge, the consumer
to stay on the same indifference curve. It uses the new prices as the base.

Equivalently, EV can be written as:

EV (p0, p1, w) = e(p0, u1)− e(p0, u0) = e(p0, u1)− w (19)

That is, the change in expenditure that would be required at the original prices to
have the same effect on consumer that price change had. In other words, it uses the
current prices as the base and asks what income change at the current prices would be
equivalent to the proposed change in terms of its impact on utility.

These variations are depicted in Figure 6. To each indifferent curve is associated a
level of utility. Therefore, each budget set represents those combinations (p, w) through
which the consumer obtains utility u and u1. Assume that the price of x1 decreases
from p0 to p1. Now the consumer can reach a new indifference curve, therefore he can
obtain higher utility. EV represents how much the consumer must be compensated
in order to be as well off as when facing p1. CV instead represents how much money
should be taken away from the consumer in order to make her stay as well off as when
facing p0.

Recall that the classic tool for measuring welfare changes is Consumer’s surplus:

CS =

∫ p1

p0
x(t)dt
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x1

x2

x

x

x(p0, w)

x(p1, w)

EV (p0, p1, w)

CV (p0, p1, w)

Figure 6: The Equivalent Variation and the Compensating Variation

Assuming a demand function x(p), the Consumer’s surplus associated with a price
movement from p0 to p1 is the area to the left of the demand curve between p0 and
p1. However, with one exception (if preferences are quasi-linear), usually, CS is not a
precise measure of welfare changes, because EV ̸= CV .

The EV and CV can be represented in terms of the Hicksian Demand Curve.
Assuming that only the price of good 1 changes from p0 to p1, and w = w1 = w0,
we can write:

EV (p0, p1, w) =

∫ p11

p01

hy(p1, p̄−1, u
1)dp1 (20)

Where p̄−1 = (p2, . . . , pL). Thus the change in Consumer Welfare measured by the
equivalent variation is represented by the area between p0, p1 and the left of the Hicksian
Demand for good 1 associated with utility level u1, that is the blue lines in Figure 6.

Similarly, the Compensating Variation can be written as:

CV (p0, p1, w) =

∫ p11

p01

hy(p1, p̄−1, u
0)dp1 (21)

This is the area between p0, p1 and the Hicksian Demand for good 1 at utility u0,
that is the area of red lines in Figure 3.

In words, we can say that the Compensating Variation is the integral of the Hicksian
Demand curve associated with the initial level of utility, and the Equivalent Variation
is the integral of the Hicksian demand curve associated with the final level of utility.

Assuming, as done in Figure 6, that good 1 is normal, EV > CV . This relation
reverses in the case of good 1 being inferior.
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x1

p1
x1(p, w)

h1(p, u
0)

h1(p, u
1)

p01

p11

x1(p
0, w) x1(p

1, w)

Figure 7: The Equivalent Variation and the Compensating Variation for a Normal Good

Furthermore, if preferences are quasi-linear (i.e. there is no wealth effect for good
1), CV = EV . In this last case (and only in this one), CV = EV and correspond
to the Consumer Surplus. In all other cases, this can be seen as no more than an
approximation between Compensating Variation and Equivalent Variation.

Appendix I: How to derive the Walrasian Demand of a
Cobb-Douglas Utility Function
Since the Walrasian Demand is the (uncompensated) optimal bundle which solves the
UMP, we must solve the following:

max
x1,x2

A · xα
1x

1−α
2 s.t. p1x1 + p2x2 ≤ w

Note that for simplicity we assume only two variables (but the number can be larger)
and α+1−α = 1 (the latter is an usual requirement of the Cobb-Douglas function: in
the case where x1, . . . , xn, then:

∑n
i=1 αi = 1).

Write the Lagrangian:

L(x1, x2, λ) = A · xα
1x

1−α
2 + λ · [w − p1x1 + p2x2]

Note that we can solve this by using the Kuhn-Tucker Method. Therefore, we write
down the F.O.C.’s and the Complementary Slackness Condition:

• ∂L
∂xi

= 0 for i = 1, 2

• λ · ∂L
∂λ

= 0
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Write down the F.O.C’s:

∂L

∂x1

= αA · xα−1
1 x1−α

2 − λp1 = 0 (22)

∂L

∂x2

= (1− α)A · xα
1x

−α
2 − λp2 = 0

And the Slackness Condition:

λ · ∂L
∂λ

= λ · [w − p1x1 − p2x2 = 0]

It is apparent that Slackness is satisfied if: λ = 0 or λ ≥ 0. If λ is equal to
zero the problem simply becomes that of unconstrained optimization of the Lagrangian
(the constraint is multiplied by zero, and therefore it disappears). Let’s explore the
case when λ ≥ 0. In this case, the Slackness condition is satisfied if and only if
w − p1x1 + p2x2 = 0, and then:

w = p1x1 + p2x2

Note that this above is the Walras’ Law. Solving the F.O.C’s for λ we obtain:

λ =
αA · xα−1

1 x1−α
2

p1

λ =
(1− α)A · xα

1x
−α
2

p2

Equating the equations above, and since α− 1 < 0, we can write:

αAxα−1
1 x1−α

2

xα−1
1 · p1

=
(1− α)A · xα

1

xα
2 · p2

Cross-multiplying, we obtain:

αAx2p2 = (1− α)Ax1p1

Solving for x1:

x1 =
αAx2P2

(1− α)Ap1
=

αx2p2
(1− α)p1

Plugging x1 in the constraint, we obtain:

p1
αAx2P2

(1− α)Ap1
+ p2x2 = w
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Simplifying p1:

αx2p2
(1− α)p1

+ p2x2 = w

Multiplying both sides by (1− α):

αx2p2 + (1− α)p2x2 = w(1− α)

Finally, we have:

αx2p2 + p2x2 − αp2x2 = w(1− α)

x2 =
w(1− α)

p2

To find x1 just plug x2 into the constraint and solve:

w = p1x1 + p2
w(1− α)

p2
p1x1 + w − αw − w = 0

x1 =
αw

p1

So, then, the Walrasian Demand of the Cobb-Douglas Utility Function is x(p, w) =
(αw
p1
, (1−α)w

p1
).

This can be generalized, in the case of n-variables, as follows: x(p1 . . . pn, w) =
((α1w

p1
, . . . αnw

pn
)
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