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Chapter 1

Sets

A set is a collection of elements characterized by having the same property. Defining,
for each element, a propositional function P (x), namely a function that can assume
only two values (true or false), then we can formally define a set as:

C = {x ∈ X : P (x)}

Where X is the universal set, i.e., the set of all elements.
Further, a set can be empty (∅) if it does not contain any element, non-empty,

or singleton if it contains only one element.
An important definition is that of the subset.

Definition 1.0.1 (subset). Given two sets, A,B, we can write that A ⊆ B if for all
x ∈ A, then x ∈ B. A proper subset is when A ⊂ B and B ̸⊂ A. Further, if A ⊆ B
and B ⊆ A, then A = B.

A first result is the following.

Theorem 1.0.1. Let A,B,C be sets. Then, if A ⊆ B and B ⊆ C, then A ⊆ C.
Further, A ⊂ C it either A ⊂ B or B ⊂ C or both.

Proof. To see the first point, by definition, A ⊆ B means that for all x ∈ A, then
x ∈ B. B ⊆ C means that for all x ∈ B, then x ∈ C. So x ∈ A is also in C.

To see the second point, A ⊂ C means that C ̸⊂ A. By contradiction, assume it is.
So we can write B ⊆ C ⊆ A and therefore B ⊆ A. But this contradicts A ⊂ B.

Definition 1.0.2. (equal sets) Given two sets, A,B, they are equal (A = B) if and
only if they contain the same elements, namely x ∈ A ⇐⇒ x ∈ B. If two sets are not
equal, they are different.

Definition 1.0.3. (complementary sets) Let X be a set and A ⊆ X. Then we can
write AC as the set of elements of X that are not in A.

Assuming X as the set of all elements, or universal sets, we can write:
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• XC = ∅

• ∅C = X

• (AC)C = A

Definition 1.0.4. The power set of A is the set of all possible subsets of A. A set of
subsets is called family. The power set is denoted as P(A).

Notice that P(A) always has 2n elements (where n is the number of elements of A).

1.1 Sets: operations

Definition 1.1.1. (Union of sets) Let A,B ⊆ X. Then we define A ∪ B as the set of
all elements that are either in A or in B.

Definition 1.1.2. (Intersection of sets) Let A,B ⊆ X. Then we define A ∩ B as the
set of all elements that either in A and in B.

If A ∩B = ∅, then A and B are two disjoint sets.

Theorem 1.1.1. Let A,B be sets. Then:
1) A ∪B = A ⇐⇒ B ⊆ A.
2) A ∩B = B ⇐⇒ B ⊆ A.
And ∅ ⊆ A for all A ⊂ X.

Proof. 1) A ∪ B = A ⇒ B ⊆ A. A ∪ B = A is the hypothesis. We want to show that,
given that, for all x ∈ B, then x ∈ A. Since the equality implies A ∪ B ⊆ A, then for
all x ∈ B, x ∈ A.

B ⊆ A ⇒ A ∪ B = A. B ⊆ A means that for all x ∈ B, then x ∈ A. A ∪ B means
that either x ∈ A or x ∈ B. Since for all x ∈ B, then x ∈ A, therefore x ∈ A.

2) A ∩ B = B ⇒ B ⊆ A. A ∩ B means that x ∈ A and x ∈ B. For being equal to
B, then, the elements of B must be contained in the elements of A. So we can write
A ∩B ⊆ A.

B ⊆ A ⇒ A ∩ B = B. B subset of A means that for all x ∈ B, then x ∈ A. Since,
A ∩ B means x ∈ A and x ∈ B, then, we have that if x ∈ B, then x ∈ A, implies that
the set of x such that x belongs to both A and B is equal to B.

Theorem 1.1.2. Let A,B,C be sets. Then the following properties hold:
1) A ∩ AC =. A ∪ AC = X
2)A ∩B = B ∩ A and A ∪B = B ∪ A (commutativity)
3)A∩(B∩C) = (A∩B)∩C = A∩B∩C and A∪(B∪C) = (A∪B)∪C = A∪B∪C

(associativity)
4)A∩(B∪C) = (A∩B)∪(A∩C) and A∪(B∩C) = (A∪B)∩(A∪C) (Distributive

law)
5) (A ∩B)C = AC ∪BC and (A ∪B)C = AC ∩BC (De Morgan’s Laws)
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Proof. We prove only 4a) and 5a).
Let’s start with 4a). We want to show that A ∪ (B ∩ C) ⇐⇒ (A ∪ B) ∩ (A ∪ C).

See A ∪ (B ∩ C) ⇒ (A ∪ B) ∩ (A ∪ C). We can have either x ∈ A or x ∈ (B ∩ C),
which means x ∈ B and x ∈ C. In both cases, we can have x ∈ A or x ∈ B, or x ∈ A
or x ∈ C. Then, we can write: A ∪ (B ∩ C) ⊆ (A ∪B) ∩ (A ∪ C).

Let’s see now: (A ∪ B) ∩ (A ∪ C) ⇒ A ∪ (B ∩ C). We have either x ∈ A or x ∈ B,
and x ∈ A or x ∈ C. If x ∈ A, then we have x ∈ A also in A ∪ (B ∩C). If x /∈ A, then
x ∈ B and x ∈ C.

Let’s see now 5a), (A ∩ B)C ⇐⇒ AC ∪ BC . (A ∩ B)C ⇒ AC ∪ BC . An x that
belongs neither to A nor B, then it belongs either to AC or BC .

AC ∪ BC ⇒ (A ∩ B)C . An x that belongs either to AC or BC does not belong
to A or B. Therefore, it does not belong to their intersection, and it belongs to the
complement of their intersection instead.

Notice that the properties above can be extended for an infinite number of sets.
In that case, we can write

⋃n
i=1Ai and

⋂n
i=1Ai. In similar notation, we can write De

Morgan’s Laws as:

•
[⋃n

i=1Ai

]C
=

⋂n
i=1A

C
i

•
[⋂n

i=1Ai

]C
=

⋃n
i=1A

C
i

Definition 1.1.3. (Set Difference) Let A,B ⊆ X. Then we define A \ B as the set
difference of A and B, i.e., the set of elements of A that are not in B. This can also be
written as A ∩BC .

Notice that A \B makes sense even if A ̸⊂ B.

Theorem 1.1.3. Let A,B be sets. Then:
1)(A \B)C = AC ∪B
2) B \ (B \ A) = A ⇐⇒ A ⊆ B
3) B \ A = B ⇐⇒ B ∩ A = ∅

Proof.

Definition 1.1.4. (Ordered Pair) If x, y are any objects, we define (x, y) to be a new
object, consisting of x as its first component and y as its second. If x = x′ and y = y′,
then (x, y) and (x′, y′) are equal

Definition 1.1.5. (Cartesian Product) If A,B are sets, the Cartesian Product A×B
is the collection of ordered pairs such that the first elements belong to A and the second
belong to B. We can write:

A×B =
{
(x, y) : x ∈ A and y ∈ B

}
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1.2 Binary Relations

Given two sets, A and B, a relation between them is any subset R of A× B. In other
words, (a, b) ∈ R, and write aRb. If A = B, then we have R ⊆ A2.

Definition 1.2.1 (Binary relation). A binary relation R on A can have the following
properties:

• Completeness: ∀a, b ∈ A, aRb or bRa (an example of non complete relation is =);

• Reflexivity: ∀a ∈ A, then aRa (an example is ≥. Instead > is not);

• Symmetry: ∀a, b ∈ A, aRb⇒ bRa;

• Transitivity: ∀a, b, c ∈ A, aRb, bRc⇒ aRc

• Irreflexivity: ∀a ∈ A, aRa is never true.

• Asymmetry: ∀a, b ∈ A, if aRb, then bRa is not true.

• Antisymmetry: ∀a, b ∈ A, if aRb and bRa, then a = b

• Negative transitivity: ∀a, b, c ∈ A, ¬aRb,¬bRc⇒ ¬aRc.

Proposition 1. 1. An asymmetric relation is irreflexive

2. A transitive and irreflexive relation is asymmetric

3. An asymmetric relation is antisymmetric

4. A antisymmetric and irreflexive relation is asymmetric

Proof. 1. Assume an asymmetric R is reflexive. Then we have aRa, and aRa is not
true. A contradiction.

2. Suppose aRb, with R transitive and irreflexivee. If antisymmetry does not hold,
we have bRa, and then, by transitivity aRbRa, which is a contradiction.

3. Notice that asymmetry implies antisymmetry, since the first holds for all a, b ∈ A,
comprised, but not only, the case where b ̸= a

4. Suppose R is antisymmetric and irreflexive. Take aRb. If a ̸= b, then bRa is
untrue. If a = b, then bRa is untrue (by irreflexivity).

Definition 1.2.2. A relation R on S is an equivalence relation if it is reflexive, symmet-
ric, and transitive. Then, let R ⊆ A2 be an equivalence relation on A, and x be an ele-
ment ofA. The equivalence class of x with respect toA is defined as Ex = {y ∈ A : yRx}
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Definition 1.2.3. Let A be a subset of X. A partition of A is a collection A of
non-empty sunsets of A such that:

• each x ∈ A belongs to some subsets of A

• for all S, T ∈ A, if S ̸= T , then S ∩ T = ∅

Definition 1.2.4. A binary relation is called an order if it is reflexive, transitive, and
antisymmetric. It is called a strict order if it is irreflexive, transitive, and antisym-
metric. An order that is also complete is called complete order.

An example of order is ≥. Instead, > is a strict order (but not an order: indeed, it
is not reflexive).

Some orders may not be complete. Then, they are defined partial orders.

Definition 1.2.5. An ordered set is a set S on which an order is defined.
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Chapter 2

Numbers

2.1 Natural Numbers

Let’s start with the natural numbers. The set of natural numbers is:

N = {1, 2, . . . }

Definition 2.1.1. A prime number is a natural number greater than 1 with no positive
divisor other than 1 and itself.

2.2 Integers and Rational Numbers

Definition 2.2.1. The set of integers is defined as:

Z = {x = a− b : for some a, b ∈ N}

It is obvious that we can write Z+ = N, and therefore Z = Z+ ∪ Z− ∪ ∅.

Definition 2.2.2. Rational Numbers The set of rational numbers is defined as:

Q =
{m
n

: m,n ∈ Z and b ̸= 0
}

Obviously, we have the following:

N ⊂ Z ⊂ Q

However, the set of rational numbers has some gaps. For instance, we know, by
Pythagorean Theorem, that the length of the hypotenuse of a right triangle with both
sides equal to 1 is

√
2. But this is not a rational number.

Theorem 2.2.1.
√
2 is not a rational number.
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Proof. . If
√
2 is a rational number, then it can be written as m

n
, where m,n ∈ mathbbZ

and they are not both even. Therefore, we can write
√
2 = m

n
. Squaring both sides, we

have 2 = (m
n
)2, i.e. 2 = m2

n2 . Then we can write:

m2 = 2n2

Therefore m2 is even, and m is even. Since m is even, we can write it as 2r, therefore,
substituting above, we have:

(2r)2 = 2n2

Dividing both sides by 2, we have:

2r2 = n2

And, as above, n must be even. But this contradicts the assumption of m,n not being
both even.

2.3 Real Numbers

Since rational numbers have gaps (not only
√
2, we need to construct a system that is

richer enough such that any subset is not empty. To do this, we start with a series of
axioms, defining a Field.

Definition 2.3.1. A field is a set F endowed with two operations, addition, and mul-
tiplication, which satisfy the following axioms.

For addition:

1. ∀x, y ∈ F, x+ y ∈ F

2. ∀x, y ∈ F, x+ y = y + x

3. ∀x, y, z ∈ F, x+ (y + z) = (x+ y) + z

4. It exists a 0 ∈ F such that x+ 0 = x, ∀x ∈ F

5. ∀x ∈ F it exists a (−x) such that (−x) + x = 0

For multiplication:

1. ∀x, y ∈ F, x · y ∈ F

2. ∀x, y ∈ F, x · y = y · x

3. ∀x, y, z ∈ F, (x · y) · z = x · (y · z)

4. It exists an 1 ∈ F such that x · 1 = x, ∀x ∈ F
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5. It exists an x ∈ F, x ̸= 0, ∀x ∈ F such that 1
x
· x = 1

Besides, for both, it holds:

• ∀x, y ∈ F, (x+ y) · z = z · x+ z · y

It is obvious that Z is not a field.

Definition 2.3.2. An Ordered Field is a field F on which we can define an order ≥
such that:

• ∀x, y, z ∈ F , if x ≤ y, then x+ z ≤ y + z.

• ∀x, y, z ∈ F , if x ≤ y, and z ≥ 0,, then x · y ≤ y · z

A further definition is required before defining the set of real numbers.

Definition 2.3.3. Suppose that A,B ⊆ R satisfy:

a ≤ b,∀a ∈ A, b ∈ B

Then, it exists a c ∈ R such that:
a ≤ c ≤ b

For all a ∈ A, b ∈ B

This is called the Completeness axiom.
To see that Q does not satisfy it, let’s take two subsets of it:

A =
{
x ∈ Q : x <

√
2
}

and

B =
{
x ∈ Q : x >

√
2
}

But since
√
2 /∈ Q, then Q is not complete.

Therefore we can define R.

Definition 2.3.4. The set R is an ordered field that satisfies the axiom of Completeness.

If a set is ordered, then we can define some special elements in it, or outside it.
These are the Upper Bound, Lower Bound, Greatest Lower Bound (Infimum),
Lower Upper Bound (Supremum).

Definition 2.3.5. Let S be ordered and E ⊆ S. Then:

• If there exists β ∈ S such that ∀x ∈ E, x ≤ β, this is called Upper Bound.

• If there exists α ∈ S such that ∀x ∈ E, x ≥ α, this is called Lower Bound
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• If E has both an upper bound and a lower bound, then it said to be bounded

• The smallest upper bound is called Supremum: β = supE

• The greatest lower bound is called Infimum: α = infE

Notice that it is not required that the supremum and the infimum are elements of
E. But if they exist, they are unique (recall, we are in an ordered set, and an order is,
by definition, antisymmetric).

Definition 2.3.6. An ordered set S it is said to have the Supremum Property if:

• Every bounded above non-empty subset has a Supremum

• Every bounded below non-empty subset has an Infimum

Theorem 2.3.1. The Supremum Property and Completeness are equivalent. That is:
Supremum Property ⇐⇒ Completeness

Proof. Let’s start with: Completeness ⇒ Supremum Property.
Take E ⊆ R, E is bounded and non-empty. We can denote U as the set of all upper

bounds. Since E is bounded, U ̸= ∅. Then, we know that ∀x ∈ E, then we have at
least one u ∈ U such that x ≤ u. By completeness, we have a c such that, x ≤ c ≤ u,
for all x ∈ E, u ∈ U . Then c is a supremum of E. The same case for lower bounds.

Let’s see now: Supremum property ⇒ Completeness. Take A,B ⊆ R such that
x ≤ y,∀x ∈ A, y ∈ B. Then, A is bounded above, and B is bounded below. By the
supremum property, α = supA and β = infB exist. Since a least upper bound for A
exists, we can write:

x ≤ α ≤ y,∀x ∈ A, y ∈ B

So completeness holds.

Definition 2.3.7. If the least upper bound belongs to the set E ⊆ R, then it is called
maximum. Similarly, if the greatest lower bound belongs to E ⊆ R, it is called
minimum.

Again, by antisymmetry, if a maximum(minimum) exists, it isn unique.

Theorem 2.3.2 (Archimedean Property). The set N is not bounded above in R. Equiv-
alently, we can say:

1. For each z ∈ R, it exists an n ∈ N such that n > z

2. For each x ∈ R++, y ∈ R, there exists an n ∈ N such that ny > z

3. For each x ∈ R++, there exists an n ∈ N such that 0 < 1
n
< x.
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Proof. Let’s prove only the main proposition. By contradiction, suppose N is bounded
above. Then, by supremum property (N is not empty), we have an α = supN. Since α
is a supremum, then α− 1 is not, and then we can write:

α− 1 < n0

For at least one n0 ∈ N. Then, we can write:

α < n0 + 1

Since n0 + 1 ∈ N. But this contradicts α being a supremum.

Notationally, we can introduce upper and lower bounds for sets that are not bounded.
These are given by −∞,+∞. Still, these are not real numbers.

However, the following conventions are customary:

• x+∞ = ∞

• x
±∞ = 0

• x · ∞ = ∞, x · −∞ = −∞

• −x(∞) = −∞, −x · (−∞) = ∞

We can also define the subsets of R (intervals) as follows:

• [a, b) = {x ∈ R : a ≤ x < b} This interval is half-closed

• [a, b] = {x ∈ R : a ≤ x ≤ b} This interval is closed

• (a, b) = {x ∈ R : a < x < b} This interval is open

• (a, b] = {x ∈ R : a < x ≤ b} This interval is half-closed

If the interval is unbounded, then we can write:

• [a,∞) = {x ∈ R : a ≤ x}

• (a,∞) = {x ∈ R : a < x}

• (−∞, b) = {x ∈ R : b > x}

• (−∞, b] = {x ∈ R : b ≥ x}

Finally, an important concept is that of Absolute Value.

Definition 2.3.8. If x ∈ R, then the absolute value of x, denoted as |x| is:

|x| =

{
x if x ≥ 0

−x otherwise

12



Theorem 2.3.3. Let x, y ∈ R and a ≥ 0. Then:

1. |x| ≥ 0

2. |x| ≤ a if and only if −a ≤ x ≤ a

3. |xẏ| = |x| · |y|

4. |x+ y| = |x|+ |y|

5. ||x| − |y|| ≤ |x− y|

6. |x− y| < c⇒ |x| ≤ |y|+ c

Proof.
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Chapter 3

Functions

Definition 3.0.1. Let A and B be sets. A function between A and B is a relation
f ⊆ A×B, non-empty, such that it (a, b) ∈ f and (a, b′) ∈ f , then a = a′.

We can also define the Domain as the set of all first elements of f , and the Range
as the set of all the second elements of f . The set B, which contains all the second
elements, is called Codomain

A function can be written as:
f : A→ B

If we allow for f be such that (a, b) ∈ f and (a, b′) ∈ f and b ̸= b′, this is called
Correspondence, and can be written as:

f : A⇒ B

Notice that for each correspondence, one can always define a function g : A→ 2B.

Definition 3.0.2. The graph of a function is defined as:

G =
{
(x, y) ∈ A×B : y ∈ f(x)

}
Notice that this is the graph of a correspondence. For a function (that is, a special

case of correspondence when the set of values is a singleton), we write the graph as:

G =
{
(x, y) ∈ A×B : y = f(x)

}
Definition 3.0.3. Consider a function. Then say that x∗ is a Fixed Point if:

x∗ = f(x∗)

A function can be surjective, injective or bijective.
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Definition 3.0.4. A function f : A→ B is surjective (onto) if every element of B is
mapped by at least one element if A. In other words, if B is equal to the range of f.

A function f : A → B is injective (one-to-one) if for all elements a, a′ ∈ A,
f(a) = f(a′) implies that a = a′. In other words, if each element in the codomain is
mapped by at most one element in the domain

Finally, a function f : A→ B is biijective if it is both surjective and injective.

An example of a function that is not surjective is y = x2 when defined on R2 because
no matter what values x takes, y can never be negative. If defined only on R+, then it
becomes surjective and injective, and therefore bijective.

A function can also act on sets. In this case we talk of Image and Pre-image

Definition 3.0.5. Suppose that f : A → B, and C ⊆ A, we define the image of C in
B as:

f(C) =
{
f(x) ∈ B : x ∈ C

}
⊆ B

And, for D ⊆ B the pre-image of D on A as:

f−1(D) =
{
x ∈ A : f(x) ∈ D

}
⊆ A

Take for example y = x2, defined on R. Then, if we take a subset of R, as the
interval [0, 2), we can write the image as follows:

f([0, 2)) =
{
f(x) : x ∈ [0, 2)

}
= [0, 4)

Taking a subset {1}, we can write the preimage as:

f−1({1}) =
{
x ∈ A : x ∈ {−1}

}
= ∅

Theorem 3.0.1. Suppose that f : A→ B, and C ⊆ A. Then:

C ⊆ f−1[f(C)]

Proof. forallx′ ∈ C, we have f(x′) ∈ f(C) and f−1(f(C)) = {x ∈ A : f(x) ∈ f(C)}.
Then x′ ∈ f−1(f(C))

The opposite is true if f is one-to-one.

Theorem 3.0.2. Suppose f : A→ B, and D ⊆ B then:

f [f−1(D)] ⊂ D

Proof. For all y ∈ f(f−1(D)), it exists an x ∈ f−1(D) such that y = f(x) and f−1(D) =
{x ∈ A : f(x) ∈ D}. So y ∈ D.

If f is one-to-one, also the opposite direction is true. So, we have f [f−1(D)] = D
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Theorem 3.0.3. Suppose that f : A→ B, and C1, C2 ⊆ A, then:

f(C1 ∪ C2) ⊆ f(C1) ∪ f(C2)

Proof. Suppose y ∈ f(C1 ∪ C2). Then, it exists x ∈ C1 ∪ C2 such that y = f(x), so
x ∈ C1 and x ∈ C2, and y ∈ f(C1) and y ∈ f(C2).

If f is one-to-one, also the opposite direction is true. So, f(C1∪C2) = f(C1)∪f(C2)
Given two functions f : A → B and g : B → C, then, for any a ∈ A, we have

f(a) ∈ B. B is the domain of g, and then g(f(a)) ∈ C. This function is called
composition, and denoted as:

(g ◦ f)(a) = g[f(a)]

Theorem 3.0.4. Let f : A → B, g : B → C two biijective functions. Then also, the
composition is bijective

Proof. Since g is bijective, then it is surjective. This means that for every c ∈ C, there
exists at most one f(a) ∈ B such that g[f(a)] ∈ C. Since f is surjective too, then it
exists at most one a such that f(a) ∈ B. Suppose it is not. That is, it exists a ̸= a′

such that (g ◦ f)(a) = (g ◦ f)(a′). Then f(a) = b ̸= f(a′) = b′ and g(b) ̸= g(b′). This is
a contradiction.

Given a bijection f : A → B, then to each y corresponds one and only one x ∈ A.
Then we can define a function B into A, called the inverse.

Definition 3.0.6. Let f : A → B be bijective. The inverse function f−1 : B → A is
given by:

f−1 =
{
(y, x) ∈ B × A : (x, y) ∈ f

}
Theorem 3.0.5. Let f : A→ B, g : B → C be two bijective functions. Then (g◦f)−1 =
f−1 ◦ g−1

Proof. Since (g ◦ f)−1 is the composition of two invertible functions, it is invertible too.
We can write:

(g ◦ f) =
{
(a, c) : it exists b ∈ B s.t. (a, b) ∈ f−1, (b, c) ∈ g−1

}
Then:

(g ◦ f)−1 =
{
(c, a) : it exists b ∈ B s.t. (b, a) ∈ f−1, (c, b) ∈ g−1

}
=

= f−1 ◦ g−1
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Chapter 4

Cardinality

To compare the relative sizes of sets, the concept of cardinality has been defined.
Two sets can be of the same size if they are equinumerous.

Definition 4.0.1. Two sets S and T are equinumerous, S ∼ T if it exists a bijective
function f : S → T

For instance, the set {1, 2, 3, . . . , 50} is equinumerous to the set {1, 4, 9, . . . , 2500}
for the function f(x) = x2.

Definition 4.0.2. A set S is called finite if S ̸= ∅, or, there is a bijection f :
{1, 2, . . . , n} → S and an n ∈ N.

A set that is not finite is infinite.

If there is a bijection f : N → S, the set is denumerable. We can write N ∼ N.
If a set is finite or innumerable, it is called countable. If not, it is called uncount-

able.

Theorem 4.0.1. The set of even numbers and the set of odd numbers are denumerable

Proof. For the even numbers, we can find the function f(n) = 2n. For the odd numbers,
the function f(n) = 2n+ 1.

Theorem 4.0.2. Z is countable.

Proof. We can find the following function that maps each element of N into an element
of Z:

f(n) =

{
(n−1)

2
if n is odd

−n
2

if n is even

Theorem 4.0.3. Suppose T and S are both countable. Then S ∪ T is also countable.

17



Definition 4.0.3. Since T and S are countable, there must be be f : N → T and
g : N → T . Then we can have h : N → S ∪ T as:

h(n) =

{
f(n+1

2
if odd

g(n
2
if even

Further, if Si is countable, then
⋃n

i=1 Si is also countable.

Theorem 4.0.4. Let S1, S2, . . . , Sn be nonempty countable sets. The Cartesian Product
×n

i=1
Si is also countable.

Proof.

Theorem 4.0.5. The denumerable union of denumerable sets is denumerable.

Proof.

Theorem 4.0.6. Q is countable.

Proof. Define Sp = {p
q
, ∀p ∈ Z} for every q ∈ N. This set is countable because it is

equinumerous to Z. If we write Q =
⋃

q∈N Sq, then it is a union of denumerable sets, so
it is denumerable and countable.

Theorem 4.0.7. R is uncountable.

Proof. Let’s focus on the interval (0, 1). Suppose it is countable. Then, any element
0 ≤ x ≤ 1, can be written as follows:

x1 = 0.a11a12a13 . . .

x2 = 0.a21a22a23 . . .

x3 = 0.a31a32a33 . . .

We can construct a real number 0.b1b2b3 . . . such that bi ̸= aii for every i. This number
belongs to (0, 1), but it is not equal to any xn because they have different nth decimal
digits.

18



Chapter 5

Some elements of Linear Algebra

The fundamental objects of Linear Algebra are vector spaces, also called linear
spaces. We can denote them by V . An example is Rn.

The elements of Vector spaces are called vectors, and they can be summed or
multiplied by an a ∈ R. Then, V is said to be closed under vector addition and scalar
multiplication.

Definition 5.0.1. A vector space is a set V closed under vector addition and scalar
multiplication and obeying the following rules:

• v + (v +w) = (u+ v) +w

• u+ v = v + u

• v + 0 = v

• v +−v = 0

• ∀a ∈ R, a(b · v) = (a · b)v

• 1 · v = v

• a · (u+ v) = a · u+ a · v

• (a+ b)u = a · u+ b · v

Another important definition is that of subspaces.

Definition 5.0.2. Let V be a vector space, and W ⊂ V . W is said to be a subspace
of V if:

• taking v,w ∈ W , then v +w ∈ W

• v ∈ W,α ∈ R, then α · v ∈ W .

It is easy to see that the smallest possible vector subspace is that made up of only
vector 0. Indeed, 0+ 0 = 0 and any scalar times 0 is equal to 0.
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Definition 5.0.3. Let v1, . . . , vn be n elements in V and a ∈ R. Then we define the
vector:

α1 · v1 + · · ·+ αn · vn

the Linear Combination of v1, . . . , vn.

Proposition 2. Let W be the set of all linear combinations of v1, . . . ,vn ∈ V . Then,
W is a subspace of V , and it is called the subspace generated by v1, . . . ,vn

Proof. Take w1 and w2 ∈ W , and write them as:

w1 = α1 · v1 + · · ·+ αn · vn

w2 = β1 · v1 + · · ·+ βn · vn

Then we can see that:

w1 +w2 = (α1 + β1)v1 + · · ·+ (αn + βn)vn ∈ W

k ·w1 = kα1v1 + · · ·+ kαnvn

Definition 5.0.4. v1, . . . ,vn are linearly dependent if it exists (α1, . . . , αn) ̸= (0, . . . , 0)
such that:

α1 · v1 + · · ·+ αn · vn = 0

If linearly dependent, we can write a vector vi as:

vi = −
n∑

i ̸=j

ai
aj
vj

for some i.
If they are not linearly dependent, then v1, . . . ,vn are linearly independent.

Definition 5.0.5. If v1, . . . ,vn are linearly independent and the set of all linear com-
binations of v1, . . . ,vn is equal to V , (that is, they generate V ), then v1, . . . ,vn is a
basis for V .

The most simple example of basis is the standard basis, namely, in R2, the set of
vectors (1, 0), (0, 1), in R3 (1, 0, 0), (0, 1, 0), (0, 0, 1) and so on. It is apparent that there
are infinitely many bases and that any set of 3 linearly independent vectors is a basis.

Proposition 3. Let V be a vector space and v1, . . . ,vn a basis. Then, each vector can
be written as a unique linear combination of the basis. Given a set of (α1, dots, α2),
there is a unique vector that can be written as:

v = α1 · v1 + · · ·+ αn · vn
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Proof. To prove that, at most, one vector can be written as a linear combination of the
basis for each (α1, dots, αn), suppose it is not. Then we have:

v = α1 · v1 + · · ·+ αn · vn

v = β1 · v1 + · · ·+ βn · vn

Combining together, we have:

(α1 − β1)v1 + · · ·+ (αn − βn)vn = 0

If α ̸= β, then v1, . . . ,vn is a set of linearly dependent vectors, thus, the definition of
basis is violated.

For example, in R2, take the vector (2, 3), it can be written as a linear combination
of the basis ((1, 0), (0, 1)). [

2
3

]
= 2 ·

[
1
0

]
+ 3 ·

[
0
1

]
Then, we call {2, 3} the coordinates of the vector (2, 3).
As seen, a vector space does not have a unique basis. Still, the number of vectors

in the basis is unique. This number is called the dimension of the vector space.

Proposition 4. Let (v1, . . . ,vn) be a basis of V and (w1, . . . ,wm) a set of vectors,
with m > n. Then (w1, . . . ,wm) is linearly independent

Proof.

Space {0} has no basis. Therefore, his dimension is zero.

5.1 Matrices

A (m× n) matrix is an array of numbers:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . amn


A vector is a special case of a matrix. Further, we can write a (m×n) matrix as an

array of row vectors Ai = (ai1, ai2, . . . , ain), or column vectors Aj = (a1j, a2j, . . . , amj

Two matrices (m× n) can be added: A+ b = C, elementwise ((aij + bij and so on).
Matrix addition is associative and commutative:

(A+B) + C = A+ (B + C)
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A+B = B + A

Further, each matrix can be multiplied by a scalar, a ∈ R.
Instead, to multiply two matrices, they must be conformable; namely, (m× n) can

be multiplied only by a (n×m) matrix, and the result is a (m×m) matrix. The ij-entry
of this new matrix is given by the inner product of the Ai column and the Aj row:

Ai · Aj =
n∑

k=1

aikakj = ai1a1j + . . . ainanj

Matrix Multiplication is still associative:

(A ·B) · C = A · (B · C)

But it is not commutative, in general.
Notice, finally, that the product of an (1×n) matrix and a (n×1) matrix is equivalent

to vector scalar multiplication xTy.
Each matrix (n×m)A has a transpose, a matrix (m×n) denoted AT . An example:

A =

[
a11 a12 a13
a21 a22 a23

]

AT =

a11 a21
a12 a22
a13 a32


Notice that (A ·B)T = BT · AT .

Definition 5.1.1. A matrix is symmetric is A = AT

Obviously, a symmetric matrix must be (n× n), that is a square matrix

Definition 5.1.2. A square matrix is diagonal if all off the diagonal elements are
equal to zero.

Definition 5.1.3. A square matrix is upper triangolar if all entries below the main
diagonal are equal to zero.

A =

a11 a12 a13
0 a22 a23
0 0 a33


A particular diagonal matrix is the identity matrix:

I =


1 0 . . . 0
0 1 . . . 0
...

... . . .
0 0 . . . 1
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Each matrix, or vector, multiplied by I is unchanged.
One of the most important concepts in matrix algebra is that of the inverse of a

matrix.

Definition 5.1.4. A is invertible (or non-singular) if there exists a B such that:

A ·B = I

and
B · A = I

Proposition 5. The inverse, if it exists, is unique.

Proof. Suppose B · A = I and C · A = I. Then we can write:

B · A = C · A

Then, B = C.

The inverse is denoted as A−1.
Only for the (2× 2) case we can find the inverse as follows:

A =

[
a b
c d

]−1

=
1

a · d− c · b
·
[
d −b
−c a

]
if (a · d− c · b) ̸= 0.
In the case of a diagonal matrix, instead, the inverse is:

A =


d1 0 0 . . . 0
0 d2 0 . . . 0
...

... . . .
0 0 . . . 0 dn

 ⇒ A−1 =


1
d1

0 0 . . . 0

0 1
d2

0 . . . 0
...

... . . .
0 0 . . . 0 1

dn


These are the only cases where the inverse of a matrix is easy to find. Most of the

time, it requires some specific algorithm, which can be (relatively) easy or considerably
most difficult.

Proposition 6. If A and B are invertible, then also their product is invertible, and:

(A ·B)−1 = B−1 · A−1

Proof. To see this, left-multiply both sides by (A ·B). Then, we have:

(A ·B) · (A ·B)−1 = (A ·B) · (B−1 · A−1)

I = A · (B ·B−1)︸ ︷︷ ︸
by associativity

·A−1

I = A · I · A−1 =

I = A · A−1

I = I
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5.2 Linear Equations

24



Chapter 6

Sequences

6.1 Metric Spaces

Given 2 elements in a set, a natural operation is that of looking at how close they are.
This is done through a function d, called metric.

Definition 6.1.1. Let X be a non-empty set. The function d : X ×X → R is called
distance if it satisfies the following conditions:

• d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y

• d(x, y) = d(y, x)

• d(x, z) ≤ d(x, y) + d(y, z) The pair (X, d) is called metric space.

The most used (although not the only one) metric space in economics is the Eu-
clidean Space, Rn, where x = (x1, x2, . . . , xn). In these spaces, the metric is defined
by:

dE(x, y) =

√√√√ n∑
i=1

(xi − yi)2 = ∥x− y∥

The function ∥∥ : Rn → R+ is called Euclidean Norm.

Proposition 7 (Cauchy-Schwarz Inequality). If a1, . . . , an and b1, . . . , bn are arbitrary
real numbers, then: ( n∑

k=1

akbk

)2

≤
n∑

k=1

a2k ·
n∑

a=1

b2k

In vector notation:
|a · b| ≤ ∥a∥ · ∥b∥
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Proof. For each t ∈ R, we can write):

n∑
k=1

(tak + bk)
2 ≥ 0

Since it is a sum of squared terms. Solving the square of the binomial, we have:

n∑
k=1

(t2a2k + 2takbk + b2k) =

t2
n∑

k=1

a2k︸ ︷︷ ︸
A

+2t
n∑

k=1

akbk︸ ︷︷ ︸
B

+
n∑

k=1

b2k︸ ︷︷ ︸
C

=

t2A+ 2tB + C

This is a quadratic inequality in t. Since it is non-negative ∀t, we must look at the
discriminant b2 − 4ac, that is:

(2B)2 − 4AC ≥ 0

B2 ≥ AC

Substituting, we have: ( n∑
k=1

akbk

)2

≤
n∑

k=1

a2k ·
n∑

k=1

b2k

Proposition 8. The Euclidean Norm is a metric for the Euclidean Space

Proof. To see this, we must check if ∥ · ∥ satisfies the three conditions.

• It is obviously greater than zero because it is the square root of the sum of squares.
Also, it is equal to zero if and only if x = y

• Since it is squared, symmetry is satisfied.

• Let’s check for triangle inequality. Take any x, y ∈ Rn. Then we can write (notice
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that we raise square to get rid of the square root:

∥a+ b∥2 =
n∑

i=1

(ai + bi)
2 =

n∑
i=1

a2i +
n∑

i=1

b2i + 2
n∑

i=1

aibi ≤

≤
n∑

i=1

a2i +
n∑

i=1

b2i + 2

√√√√( n∑
i=1

a2i
)
·
( n∑

i=1

b2i
)

︸ ︷︷ ︸
by Cauchy-Schwarz Inequality

=

(√√√√ n∑
i=1

a2i +

√√√√ n∑
i=1

b2i

)2

= (∥a∥+ ∥b∥)2

But notice that:
∥a+ b∥2 ≤ (∥a∥+ ∥b∥)2

Can also be written as:√√√√ n∑
i=1

(ai + bi)2 ≤

√√√√ n∑
i=1

a2i +

√√√√ n∑
i=1

b2i

Assuming x− y = a, y − z = b, so a+ b = x− y + y − z = x− z, we can write:√√√√ n∑
i=1

(xi − zi)2︸ ︷︷ ︸
dE(x, z)

≤

√√√√ n∑
i=1

(xi − yi)2︸ ︷︷ ︸
dE(x, y)

+

√√√√ n∑
i=1

(yi − zi)2︸ ︷︷ ︸
dE(y, z)

Given a metric space, we can consider a ϵ-neighborood.

Definition 6.1.2. Consider a metric space (X, d) and ϵ > 0. Fix an x ∈ X, then we
define the ϵ-neighborood as the set Nϵ(x):

Nϵ(x) =
{
y ∈ X : d(x, y) < ϵ

}
6.2 Sequences

Definition 6.2.1. A sequence is a function whose domain is N.
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In terms of notation, we can write {xn}∞i=1, or just {xn}, where xn is the nth−term
of the sequence.

Definition 6.2.2. A sequence {xn} in a metric space (X, d) is said to converge to if
there exists an s ∈ X such that, for all ϵ > 0, it exists an m ∈ N such that sn ∈ Nϵ(s)
for n ≥ m

Then, s is the limit of the sequence, and we can write {sn} → s.
Another way of writing it (if the sequence is a subset of R, and then the absolute

value is a metric on R) is:
|sn − s| < ϵ

If a sequence does not converge, then it diverges.
The simplest example of converging sequence in (R, | · |) is {sn} = { 1

n
}. This

converges to 0 as n → ∞. Still, notice that if a sequence converges or not, it depends
on the space. Then, for instance, sn = 1

n
does not converge in (R++, | · |).

Theorem 6.2.1. If a sequence {xn} converges, then its limit is unique.

Proof. Assume {xn} converges to a and b. If a ̸= b, then we can construct a metric
d(a, b). This satisfies the triangle inequality so that:

d(a, b) ≤ d(a, xn) + d(xn, b)

Let’s assume ϵ = d(a,b)
2

> 0. Then, we can write:

d(a, xn) <
d(a, b)

2
∀n ≥ n1, n1 ∈ N

d(xn, b) <
d(a, b)

2
∀n ≥ n2, n2 ∈ N

Assuming n = max{n1, n2}, ∀m > n, we can write d(a, b) < ϵ. Combining all the
elements, we have:

d(a, b) ≤ d(a, xn) + d(xn, b) <
d(a, b)

2
+
d(a, b

2
= d(a, b)

This is a contradiction. Then, it must be a = b.

Theorem 6.2.2. If a sequence {xn} converges, then, for every ϵ > 0, there exists an
M ∈ M such that d(xn1, xn2) < ϵ, for any n1, n2 > M .

Proof. Since {xn} converges, then {xn} → x. By the triangle inequality, we have:

d(xn1, xn2) ≤ d(xn1, x) + d(x, xn2)

For any ϵ > 0, there exists an M such that d(x, xn1), d(x, xn2) < ϵ
2
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Definition 6.2.3. A sequence {xn} in a metric space (X, d) is bounded if there exists
a s ∈ X and a b ≥ 0 such that:

d(x, xn) ≤ b

for all n ∈ N.

This means that we can find an interval (−b, b) that contains all the elements of
the sequence. An example of bounded sequence can be {xn} = { 1

n
}, which is bounded

between (1, 0). A not-bounded sequence can be {xn} = {2n}.

Theorem 6.2.3. Any convergent sequence is bounded.

Proof. Since we know that {xn} → x, we can take a ϵ s.t. d(xn, x) < ϵ for an m ∈
N,m > n. If we fix ϵ = 1, we can define b as:

b = max{1, d(xn, x)}

Then, d(xn, x) ≤ 1.

However, notice that the opposite may not be true. Not all bounded sequences
converge. The classical example is {xn} = (−1)n. It is bounded because it is comprised
in the interval (−1, 1) but does not converge.

Theorem 6.2.4. Suppose {xn} → x and xn ≥ 0, ∀n. Then, x ≥ 0. This means that
the weak inequality is preserved at the limit.

Proof. Assume x < 0. We can find an ϵ such that d(xn, x) < ϵ. Take ϵ = |x|. Then, we
can write:

|xn − x| < |x| ∀n ≥ m n,m ∈ N

Therefore, xn < 0, and we have reached a contradiction.

However, this result holds only with weak inequality.
With converging sequences, we can make the following operations.

Theorem 6.2.5. Consider {xn}, {yn} ⊂ R, convergent sequences with {xn} → x and
{yn} → y. Then the following properties hold:

1. xn + yn → x+ y

2. xn · yn → x · y

3. xn

yn
→ x

y
if yn ̸= 0 and x ̸= 0

Proof. Let’s see 1). We need to show that:

|(xn + yn)− (x+ y)| < ϵ
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For n ≥ m, and n,m ∈ N. Rearranging terms and applying the triangle inequality, we
have:

|(xn + yn)− (x+ y)| = |(xn − x) + (yn − y)| ≤ |xn − x|+ |yn − y|
Since we know that {xn} → x, we know that there exists a n1 such that:

|xn − x| < ϵ

For n1 ≥ m. The same for {yn} → y.

|yn − y| < ϵ

For n2 ≥ m. Taking n = max{n1, n2}, and letting ϵ = ϵ
2

then we have:

|(xn − x) + (yn − y)| ≤ |xn − x|+ |yn − y| < ϵ

2
+
ϵ

2
= ϵ

for all n ≥ m.
Let’s see 2). Notice that:

(xnyn − xy) = xn(yn − y) + y(xn − x)︸ ︷︷ ︸
by adding and subtracting yxn

Then, applying triangle inequality:

|xnyn − xy| ≤ |xn(yn − y)|+ |y(xn − x)|

But recall that any convergent sequence is bounded, so a supremum exists: let’s call
it Mx = sup{|xn|}. And we can write:

|xnyn − xy| ≤Mx|yn − y|+ |y||xn − x|

For any ϵ > 0, there are n1, n2 such that:

|yn − y| < ϵ

2Mx

|xn − x| < ϵ

2y

So, we can write:
|xnyn − xy| ≤ |xn(yn − y)|+ |y(xn − x)| ≤
≤Mx|yn − y|+ |y||xn − x| <

Mx
ϵ

2Mx

+ y
ϵ

2y
= ϵ

Let’s see 3)

Theorem 6.2.6. Consider a real-vector sequence {xn} = {(x1k, x2k, . . . , xnk)} in the eu-
clidean space (Rn, ∥ · ∥). {xn} converges if and only if {xik} converges for i = 1, 2, . . . , n
and {xk} → x, and {xik} → xi, ∀i = 1, 2, . . . , n, where s = (s1, s2. . . . , sn).
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Proof.

A sequence can be:

• increasing if xn+1 ≤ xn (strictly with <)

• decreasing if xn+1 ≥ xn (strictly with >)

• monotone is (strictly) increasing or decreasing

Theorem 6.2.7. A monotone sequence {xn} converges if and only if it is bounded

Proof. A convergent sequence is bounded. We want to show that an increasing and
bounded sequence converges. Take {xn} to be monotone and bounded. If the sequence
is increasing and bounded, there is a least upper bound, x = supS, where S denotes
the non-empty bounded set {xn}. Let’s prove if {xn} → x. Since x is a least upper
bound, then x− ϵ is not an upper bound. So there is a point xN in {xn} such that:

x− ϵ < xN

Since {xn} is increasing, then, if N ≤ n, then xN ≤ xn. Hence:

x− ϵ < xN ≤ xn ≤ x < x+ ϵ

And then:
|xn − x| < ϵ

We can also define subsequences.

Definition 6.2.4. Let {xn} be a sequence and {nk} be any sequence of real numbers
such that:

n1 < n2 < . . .

The sequence {xnk} is called the subsequence of {xn}.

For example, a series {x1, x2, x3, x4, x5 . . . } have a subsequence given by {x2, x4, . . . }.

Theorem 6.2.8. In a metric space (X, d), a sequence converges to x if and only if any
subsequence {xnk} converges to x.

Proof. (⇒) Suppose {xn} convrges to x. Take {xnk} as an arbitrary subsequence. For
any ϵ > 0 we know that there exists a n > m for which:

d(xn, x) < ϵ

We can similarly find an nk > m such that:

d(xnk, x) < ϵ

(⇐) Suppose every subsequence {xnk} converges to x. Then {xn} converges to x as
well because a sequence is always a subsequence of itself.
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This theorem can be useful to check if a sequence does not converge. Indeed, it is
sufficient to find two subsequences with different limits. For example, {xn} = (−1)n

it is not convergent. Indeed, the subsequence {x2n} = (−1)2n converges to 1, the
subsequence {x2n+1} = (−1)2n+1 converges to −1.

When a sequence converges to its limit, the terms get closer to each other as n gets
larger. This is called Cauchy Property.

Definition 6.2.5. A sequence {xn} in a metric space (X, d) is said to be a Cauchy
Sequence if for all ϵ > 0, there exists a number N such that, for all n,m ≥ N , we
have:

d(xn, xm) < ϵ

Theorem 6.2.9. Every convergent sequence is a Cauchy sequence

Proof. We need to show that, for all ϵ it exists N such that, if n,m ≥ N , then
d(xn, xm) < ϵ. We know that {xn} converges to x. By the triangle inequality:

d(xn, xm) ≤ d(xn, x) + d(x, xm)

We know that d(xn, x) < ϵ for all ϵ > 0. Further, if m > n, then d(xm, x) < ϵ. Let’s
take ϵ = ϵ

2
Then, we have:

d(xn, xm) ≤ d(xn, x) + d(x, xm) <
ϵ

2
+
ϵ

2
= ϵ

Notice that the opposite is not always true. There can be some Cauchy Sequences
that do not converge. It depends on the choice of the metric space. The classical
example is: {xn} = 1

n
on the metric space R++. It is a Cauchy sequence, but it does

not converge.
The metric spaces where Cauchy Sequences converge are called Complete Spances.

Definition 6.2.6. A metric space (X, d) is called complete if every Cauchy Sequence
in X converges in X.

We can prove that R and Rn are complete spaces.

Theorem 6.2.10. The metric space (R, | · |) is complete.

Proof. To show this, we first assume that any Cauchy Sequence is bounded. Then, by
Bolzano-Weierstraß theorem (see below), there is convergent subsequence {xnk

} → x.
To see that any Cauchy Sequence is bounded, we just need to show that there is b
such that |xn − xm| ≤ b, for all n,m ∈ N. Since it is a Cauchy Sequence, we know
|xn−xm| < ϵ. Taking ϵ = 1, we can define b as max{1, |xn−xm|}. Then, |xn−xm| ≤ b.

Any bounded sequence has a convergent subsequence (Bolzano-Weierstraß Theo-
rem), so {xnk} → x. By triangular inequality:

|xn − x| ≤ |xn − xnk
|+ |xnk

− x|
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Then, ∀ϵ > 0, there are n1, n2 such that:

|xn − xnk
| < ϵ

2
∀n, nk > n1

|xnk
− x| < ϵ

2
∀nk > n2

Taking N = max{n1, n2}, then:

|xn − x| ≤ |xn − xnk
|+ |xnk

− x| < ϵ

2
+
ϵ

2
= ϵ

And {xn} → x.

Theorem 6.2.11. The metric space (Rn, ∥ · ∥) is complete

Proof.

Theorem 6.2.12. (Bolzano-Weierstraß Theorem) Every bounded sequence in (R, | · |)
has a convergent subsequence.

Proof. Take the bounded sequence {xn} ⊆ [a1, b1]. Since [a1, b1] ⊂ R, there are infinitely
many elements in it. We can find a mid-point a1−b1

2
. Take [a1,

a1−b1
2

] to construct
a subsequence x1. We can continue for infinitely many steps up to where bk and ak
collapse on each other. Indeed |bk − ak| = 1

2k−1 · |b1 − a1| = 0 for values of k very large.
So ak = bk.

We have therefore built a subsequence, {xnk
}. We must show that it converges to

x. Since bn ≤ x ≤ an, we can write, for all ϵ > 0:

|xnk
− x| ≤ |xnk

− an|+ |an − x|

|xnk
− an| is bounded between bn and an, but we also known that |bn − an| → 0. So, we

can write:
|xnk

− x| ≤ |xnk
− an|+ |an − x| < ϵ

2
+
ϵ

2
= ϵ

Then {xnk
} converges and R is complete.

6.3 Contraction Mapping Theorem

This is a fixed point theorem, with some important implications.

Definition 6.3.1. Let (X, d) be a metric space and T : X → X a function mapping
X into itself. T is a contraction mapping if it exists a β ∈ (0, 1) (called modulus),
such that:

d(T (x), T (y)) ≤ βd(x, y) ∀x, y ∈ X

Definition 6.3.2. The fixed points of a mapping T , are elements of X such that:

T (x) = x
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Then, for any arbitrary point x0 ∈ X, we can construct a sequence of functions
{f(xn)} which converges on the fixed point x∗ ∈ X.

Then, we have the following theorem.

Theorem 6.3.1 (Contraction Mapping Theorem, or Banach Fixed Point Theorem).
If (X, d) is a complete metric space and T : X → X is a contraction mapping, with
modulus β, then:

1. T has exactly one fixed point x∗ ∈ X

2. for any x0 ∈ X, d(T n(x), x∗) ≤ βnd(x0, x
∗), where T n(x) = T ◦ T n−1(x)

Proof. In this proof, we need to show the existence and the uniqueness of x∗. We start
by constructing a Cauchy Sequence. Take any x ∈ X, and m,n ∈ N. We can assume
m > n. Then we have:
d(Tm(x), T n(x) ≤ d(Tm(x), Tm−1(x)) + d(Tm−1(x), T n(x))︸ ︷︷ ︸

by Triangle inequality

d(Tm(x), Tm−1(x) + d(Tm−1(x), Tm−2(x))︸ ︷︷ ︸
by triangle inequality on d(Tm−1(x), Tn(x)

· · ·+ d(T n+1(x), T n(x))

≤ β
[
d(Tm−1(x), Tm−2(x) + d(Tm−2(x), Tm−1(x) + . . . d(T n(x), T n−1(x)

]
≤ (βm−1 + . . . βn)d(T (x), x)

=
βn

1− β
d(T (x), x)

As n→ ∞, then d(Tm(x), T n(x)) → 0. So {T n(x)} is a Cauchy sequence in a complete
space that converges to x∗.

We must prove now the existence of x∗, namely that x∗ is a fixed point:

T (x∗) = x∗

By triangle inequality:

d(T (x∗), x∗) ≤ d(T (x∗), T n(x)) + d(T n(x), T (x∗))

≤ βd(x∗, T n−1(x)) + d(T n(x), x∗) ∀n

Both terms on the right-hand side go to zero as n→ ∞. So d(T (x∗), x∗) = 0.
Finally, we must show that x∗ is the unique fixed point. Suppose it is not, so x∗ ̸= y

are both fixed points. Then we have T (x∗) = x and T (y) = y. Thus:

d(x∗, y) = d(T (x∗), T (y) ≤ βd(x∗, y)

But β ∈ (0, 1), d(x∗, y) ≤ βd(x∗, y) is impossible. We have reached a contradiction.
Finally, we can write the convergence path as follows: take any initial point x0.

Since T (x∗) = x∗, then:

d(T n(x0), x
∗) = d(T n(x0), T (x∗)) ≤ βd(T n−1(x), x∗) ≤ · · · ≤ βn(x0, x

∗)
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Chapter 7

Topology: some elements

We focus on the basic topology of Euclidean Spaces.

Definition 7.0.1. A set S ⊆ Rn is open, if, for every s ∈ S, it exists a ϵ > 0 such that
Nϵ(s) ⊆ S.

The simplest example of an open set is an open interval in R.

Definition 7.0.2. A set S ⊆ Rn is closed if its complementary is open.

Again, the simplest example of an open set is a closed interval in R.
Still, notice that a set can be neither closed nor open. For instance, a half-closed

interval.

Definition 7.0.3. Let S ⊆ Rn. A point s ∈ Rn is called a limit point of S if there
exists a sequence {sn} ⊆ S and {sn} → s

Theorem 7.0.1. A set is closed if and only if it contains all its limit points.

Proof. (⇒) If S is closed , it contains all its accumulation points. Suppose it does not.
Then, there is a sequence {sn} ⊆ S, such that {sn} → s, s ̸∈ S. Since S is closed, then
SC is open. We can find an ϵ′ such that Nϵ(s) ⊆ SC . However, since {sn} → s, we can
find an m such that ∀ϵ, sn ∈ Nϵ(s), for n > m. If ϵ′ = ϵ, then we have sn ∈ SC when
n > m, but this contradicts the assumption that {sn} ⊆ S.

(⇐). If S contains all its limit points, then it is closed. Suppose that S is not
closed. Then it does not contain all its limit points (contrapositive statement). If S is
not closed, then SC is not open. Then it exists a x ∈ SC such that ∀ϵ > 0, Nϵ(x)∩S ̸= ∅.
If ϵ = 1

n
, then we can have sn ∈ N 1

n
(x) ∩ S. So {sn} ∈ S and {sn} → x.

But then, it is not true that every converging sequence {sn} ∈ S implies that the
limit also lies in S.

Theorem 7.0.2. Rn and ∅ are both open and closed.

Proof. Rn is open. But also closed since it contains all its limit points. ∅ can be written
as (Rn)C , so it is also open and closed.
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Theorem 7.0.3. The following properties hold:

1. The union of arbitrarily many open sets is open

2. The intersection of finitely many open sets is open

3. The intersection of arbitrarily many closed sets is closed

4. The union of finitely many closed sets is closed.

Proof. Let’s start with 1). This can be written as:

∞⋃
i=1

Ai

is open if all Ai are open. Take a s ∈
⋃∞

i=1Ai, then s ∈ Ai (at least one, by the definition
of the union of sets). Since Ai is open, then there exists an ϵ > 0 such that Nϵ(s) ⊆ Ai

and therefore:

Nϵ(s) ⊆ Ai

∞⋃
i=1

Ai

Let’s see 2). This can be written as:

n⋂
i=1

Ai

is open if Ai is open for all i = 1, . . . , n. Take s ∈
⋂n

i=1Ai, so s ∈ Ai for every
i = 1, . . . , n. For each Ai, then we have an ϵi > 0 such that:

Nϵi(s) ⊆ Ai.

Taking ϵ = max{ϵi} > 0, we have:

Nϵi(s) ⊆
n⋂

i=1

Ai

And
⋂n

i=1Ai is open.
Let’s see 3) This can be written as:

∞⋂
i=1

Ai

is closed if all Ai are closed. Take a converging sequence {sn} ⊆
⋂∞

i=1Ai. Then {sn}
must belong to Ai for all i. Since Ai is closed, then its limit is in Ai, too, for all i.
Then, s ∈

⋂∞
i=1.
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Let’s see 4). This can be written as:

n⋃
i=1

Ai

is closed if Ai are closed. We can prove a contrapositive: if
⋃n

i=1Ai, then at least
one Ai is not closed. Since

⋃n
i=1Ai, there is a converging sequence in

⋃n
i=1Ai whose

limits is not in Ai,∀i = 1, . . . , n. There must be at least one Ai which has infinitely
many elements in {sn}. We can take a subsequence {snk

} that converges at s (because
{sn} → s). Since s ̸∈ Ai, Ai is not closed.

Definition 7.0.4. Let A ⊆ Rn. A point x ∈ R is a contact point of A if, for any
ϵ > 0, we have Nϵ(x) ∩ A ̸= ∅.

Put differently, a contact point is a point such that any open interval containing
it also has some element in common with A. Still, a contact point may also not be a
point of A if A is open, for instance.

The set of all contact points is called closure.

Definition 7.0.5. Let A ⊆ Rn. The set of all contact points:

Ā =
{
x ∈ Rn : Nϵ(x) ∩ A ̸= ∅,∀ϵ

}
it is called closure of A and it is defined as Ā or cl(A).

A ⊆ Ā because any x such that {xn} → x or it is in A or it is in Ā.

Theorem 7.0.4. Ā is closed.

Proof. We need to show that any sequence {xn} has its limit points in Ā. Assume it
is not. Then x ∈ AC , so x is not a contact point of A. So, we have (by definition of
contact point):

Nϵ(x) ∩ A = ∅

Any open neighborhood is an open set, so for {xn} → x, xn ∈ Nϵ(x),∀ϵ. Take a xn
for n ≥ m, n,m ∈ N and ϵ′ > 0 such that ϵ′ < ϵ. Therefore, we have N ′

ϵ(xn) ⊆ Nϵ(x).
Hence:

Nϵ′(xn) ∩ A = ∅

and xn is not a contact point. But this is a contradiction because xn ∈ A, and therefore
in Ā.

An example of closure can be: A = (0, 1), Ā = [0, 1]. Another example: A = { 1
n
:

n ∈ N}.Ā = A ∪ 0.
Ā is the smallest closed set containing A.

Theorem 7.0.5. Let A ⊆ Rn. A is closed if and only if A = Ā.
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Proof. (⇒)If A is closed, then Ā = A. Notice that A = Ā, means that A ⊆ Ā and
Ā ⊆ A. The first is obvious by the definition of closure. Let’s see Ā ⊆ A. We assume
that A is closed, so any convergent sequence in A has its limits in A. We want to show
that there exists x ∈ Ā such that x ∈ A, for all x. x ∈ Ā means Nϵ(x)∩A ̸= ∅, ∀ϵ. We
can take {xn} ∈ Nϵ(x). Since A is closed, its limit x is in A. So, Ā ⊆ A.

(⇐)If Ā = A, then A is closed. This is trivial because we have shown that Ā is
closed.

Definition 7.0.6. Let A ⊆ Rn. The boundary set of A, defined by ∂A is:

∂A = Ā ∩ ĀC

Theorem 7.0.6. ∂A is closed.

Proof. This is immediate since Ā and ĀC are closed sets, and the union of closed sets
is closed itself.

Definition 7.0.7. Let A ⊂ Rn. x ∈ Rn is called an interior point of A if there exists
ϵ > 0 such that Nϵ(x) ⊆ A. The set of all interior points is the interior of A, int(A).

Theorem 7.0.7. Let A ⊆ Rn. int(A) ⊆ A and A is open.

Proof.

Theorem 7.0.8. Let A ⊆ Rn. A is open if and only if A = int(A).

Proof. (⇒) If A is open, then by definition of openness, ∀x ∈ A, it exists ϵ > 0 such that
Nϵ(x) ⊆ A. Then x is in int(A), and A ⊆ int(A). Since A ⊆ int(A), then A = int(A).

(⇐) int(A) is open. So if A = int(A), then A is open.

Theorem 7.0.9. Let A ⊆ Rn. Then:

1. int(A) = A \ ∂A

2. int(A) ∩ ∂A = ∅

3. ∂A ∪ int(A) = Ā

Proof.

Definition 7.0.8. Let A ⊆ Rn is called (sequentially) compact if every sequence
{xn} ∈ A has a subsequence {xnk

} → s ∈ A.

Notice that {xn} may not be convergent. And this definition of compactness holds
only in metric spaces.

For example, [a, b] ⊆ R is compact. Indeed, any sequence {xn} in the interval is
bounded and therefore has a convergent subsequence to x(Bolzano-Weierstraß theorem).
Furthermore, [a, b] is a closed set, so for any subsequence in it, x ∈ [a, b].

A famous result is the following.
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Theorem 7.0.10. A compact set is closed and bounded.

Proof. Suppose A is compact. This implies that A is closed. Indeed, taking a converging
subsequence {xn}, by compactness, there is a converging subsequence {snk

} → s ∈ A.
So {xn} → x, and A is closed.

If A is unbound, then it is not compact. The unboundedness means that |xn−x| >
b ∀n ∈ N. Compactness implies that there is a convergent subsequence in A, but
convergence implies boundedness, which is not the case here.

Theorem 7.0.11. Suppose that A and B are compact sets. Then:

1. A ∩B is compact

2. A ∪B is compact

Proof. Let’s see 1). Take a sequence {xn} ∈ A ∪ B, so {xn} ∈ A and B. Since A is
compact, there is a subsequence {xnk

} whose limit x is in A. Because B is compact,
there is a subsequence {xnk

} whose limit y is in B. Then x = y ∈ A ∩B.
Let’s see 2). Take a sequence {xn} in A∪B. This means that {xn} is in A, in B or

both. Since A and B are compact, we can find {snk
} that has a limit in A, or in B, or

both. Then A ∪B is compact.

This can be extended to any finite union or intersection of compact sets.

Theorem 7.0.12. Suppose A and B are compact. Then A×B is compact.

Proof. Take any sequence in A×B, {xn} = (an, bn), wit an ∈ A and bn ∈ B. Because A
is compact, then {an} has a converging subsequence to a ∈ A. Because B is compact,
then {bn} has a converging subsequence to b ∈ B. Then (ank

, bnk
) → (a, b).

This result can be extended to the Cartesian Product of any finite number of sets.
Furthermore, any box×n

i=1
[ai, bi] ⊆ Rn is compact.

Theorem 7.0.13. A closed subset of a compact set is compact.

Proof. Take A ⊆ B, where A is closed, and B is compact (closed and bounded). Since
A is closed, it contains all its limit points. Since A is a subset of B, and B is bounded,
then A is bounded. So A is compact.

Theorem 7.0.14 (Heine-Borel Theorem). Every closed and bounded subset of Rn is
compact.

Proof. LetA be a closed and bounded subset of Rn. We know that eachA ⊆×n

i=1
[ai, bi] ⊆

Rn which is compact. And a closed subset of a compact set is compact. So A is com-
pact.

Notice, however, that this theorem could not hold in different metric spaces.

39



Definition 7.0.9. Two subsets A and B of a metric space are said to be separated
if both A ∩ B̄ and Ā ∩ B are empty. A subset E of the metric space is said to be
connected if E is not the union of two nonempty separated sets.

An example of a connected set is [0, 1]. Instead [0, 1) ∪ (1, 2] is not connected.

Theorem 7.0.15. A set E ∈ R is connected if and only if ∀x, y ∈ E and x < z <
y, z ∈ E. In other words, E must be an interval.

Proof. Connectedness ⇒ interval. Suppose x < z < y, and z ∈ E. Define:

A−
z = (−∞, z) ∩ E

A+
z = (z,∞) ∩ E

Since x ∈ A−
z and y ∈ A+

z , these are both non-empty. Notice that A−
z ⊆ (−∞, z) and

A+
z ⊆ (z,∞), so they are separated. E is not connected because it is the union of two

non-empty separated sets.
Interval ⇒ connectedness. Suppose E is not connected. Then, there are two separate

sets A and B such that A ∪ B = E. We need to show that E is not an interval. Pick
x ∈ A and y ∈ B, x < y. Define z = sup(A ∩ [x, y]) (where A ∩ [x, y] ̸= ∅. So z ∈ Ā.
Otherwise, it exists an ϵ > 0 such that z − ϵ is an upper bound of A. Since A,B are
separated, z ̸∈ B, and thus x ≤ y < z. If z ̸∈ A, x < z < y and z ∈ E. If z ∈ A,
then z ̸∈ B̄. Then it exists z′ such that z < z′ < y. Thus, z′ ̸∈ A (z is sup), z′ ̸∈ B,
(B ⊆ B̄), so z′ ̸∈ E.
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Chapter 8

Continuity

Let (X, dx) and (Y, dy) be two metric spaces. A function f : X → Y maps elements from
X to Y . For each sequence {xn} ⊆ Y , we have a corresponding sequence {yn} ⊆ Y ,
where yn = f(xn).

To preserve the topological properties of X in Y , yn must converge in Y . This is,
in a nutshell, what continuity means.

Definition 8.0.1. A function f : X → Y is continuous if ∀ϵ > 0, ∀x ∈ X, it exists a
δ > 0 such that, x′ ∈ X:

dx(x, x
′) < δ

then:
dy(f(x), f(x

′)) < ϵ

Theorem 8.0.1. Let f : X → Y . f is continuous if and only if send any convergent
sequence {xn} in a convergence sequence {yn} ∈ Y . That is:

{f(xn)} → {f(x)}

As long as:
{xn} → x

Proof. (⇒) f(xn) ∈ Y . By continuity of f , ∀ϵ > 0,∀x ∈ X it exists a δ > 0, such that,
for x′ ∈ X d(x, x′) < δ and d(f(x), f(x′)) < ϵ.

(⇐) f preserves convergence, then it is continuous. We prove the contrapositive:
f does not preserve convergence, then it is not continuous. That is, {xn} → x, but
{f(xn)} ̸→ f(xn). This means that, ∀ϵ > 0,∀x ∈ X it exists a δ > 0, such that, for
x′ ∈ X d(x, x′) < δ and d(f(xn), f(x′)) ≥ ϵ. Let’s take δ = 1

n
For each δn, xn ∈ Nδn(x)

and d(f(xn), f(x′)) ≥ ϵ.

In other words, if f is continuous, the convergence behavior of {xn} is preserved in
Y by {f(xn)}.

Theorem 8.0.2. The composite of continuous functions is continuous.

41



Proof. Take f : X → Y and g : Y → Z. Since f is continuous, then {xn} → x
and {f(xn)} → f(x). Since g is continuous, then {f(xn)} → f(x) and {g(f(xn))} →
g(f(x)). Then (g ◦ f)(xn) is continuous.

Theorem 8.0.3. Let f : X → Y and g : X → Y , f, g are continuous. Then, the
following functions are also continuous:

1. h(x) = f(x) + g(x)

2. h(x) = f(x)g(x)

3. f(x)
g(x)

if g(x) ̸= 0,∀x ∈ X

Proof. This derives directly from the properties of sequences (Theorem 6.5, above).

Theorem 8.0.4. Let f : X → R. The following statements are equivalent:

1. f is continuous

2. For each closed set V ⊆ f(X), f−1(V ) is closed

3. For each open set V ⊆ f(X), f−1(V ) is open

Proof. (1) ⇒ (2) f is continuous and V ⊆ f(X) is closed. We want to show f−1(V ) is
closed. Take a convergent sequence {xn} ⊆ f−1(V ). We must show that x ∈ f−1(V ).
xn ∈ f−1(V ), so f(xn) ∈ V . f is continuous, so {f(xn)} → f(x). V is closed, so
f(x) ∈ V . That is x ∈ f−1(V ).

(2) ⇒ (3): V is open. We want to show f−1(V ) is open. (f−1(V ))C = {x ∈ X :
f(x) ̸∈ U} = f−1(UC). Let U = V C . When V is open, U is closed. f−1(U) is closed.
f−1(V ) = f−1(UC) = (f−1(U))C .

(3) ⇒ (1): We want to show the ϵ, δ. Pick x ∈ X and ϵ > 0 be given. Nϵ(f(x))
is open. f−1(Nϵ(f(x))) is open and contains x. Therefore, it exists a δ > 0 such that
Nδ(x) ⊆ f−1(Nϵ(f(x))). Each x′ ∈ Nδ(x) must also belong to f−1(Nϵ(f(x))).

Theorem 8.0.5. Suppose that f : A→ B is continuous. Then:

• If f(x0) > 0, it exists δ > 0 such that f(x) > 0, ∀x ∈ Nδ(x0).

• If f(x0) < 0, it exists δ > 0 such that f(x) < 0, ∀x ∈ Nδ(x0).

Proof.

Theorem 8.0.6. Suppose f : A → B and g : f(A) → C are continuous then. g ◦ f is
continuous.

Proof.

Definition 8.0.2. A function f : X → R is bounded if there is a B ∈ R such that
|f(x)| ≤ B, for any x ∈ X.
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Theorem 8.0.7. Suppose that a continuous function f : X → R, where X is compact.
Then f(X) is compact.

Proof. For every convergent sequence in Y , there is a converging subsequence. Because
X is compact, by def. we know that there is a subsequence:

{xnk
} → x∗ ∈ X

So, f(x∗) ∈ f(X). Because f is continuous, we have:

f(xnk
) ⊆ {f(xn)} → f(x∗)

Theorem 8.0.8 (Weierstraß Theorem). Let f : X → R, f continuous and X compact,
and:

M = sup f(x)

m = inf f(x)

Then there exists p, q ∈ X such that f(p) =M and f(q) = m.

Proof. X is compact and f is continuous. Then f(X) is compact and a subset of R.
By the least upper bound property, sup and inf exist. Take a sequence {xn} ⊆ X such
that f(xn) →M . Because f(X) is closed, M ∈ f(X). The same for m ∈ F (X).

Definition 8.0.3. A function f : X → R is uniformly continuous if for every ϵ > 0,
there exist δ > 0 such that:

|f(x)− f(x′)| < ϵ

for all x, x′ ∈ X, such that ∥x− x′∥ < δ.

The definition between this concept and continuity mainly resides in the fact that
uniform continuity is a property of a function in a set, whereas continuity is defined at
any single point.

Every uniformly continuous function is continuous. The opposite is not true.

Theorem 8.0.9. Let f be a continuous real-valued function of a compact set X. Then
f is uniformly continuous on X.

Proof.

Theorem 8.0.10. Let f : E → R. Suppose there is K > 0 such that:

|f(x)− f(y)| ≤ K · |x− y|

f is called Lipschitz continuous on E. The inequality is called Lipschitz condition.

Proof.
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Theorem 8.0.11. If f is Lipschitz continuous, then it is uniformly continuous.

Proof. This is immediate taking ϵ = ϵ
K
.

Theorem 8.0.12. If f : X → R is continuous, E ⊆ X is connected, then f(E) is
connected.

Proof.

Theorem 8.0.13 (Intermediate Value Theorem). Let f : [a, b] → R be continuous. If
f(b) > f(a) and f(a) > c > f(b), then there exists a point x ∈ (a, b) such that f(x) = c.

Proof. f([a, b]) is connected, so c ∈ f([a, b]). Thus, there must be x ∈ [a, b] such that
f(x) = c. Since x ̸= a, then x ∈ (a, b).

Definition 8.0.4. A function f : (a, b) → R. Consider any point x such that a ≤ x ≤ b.
We define the right-hand limit as:

f(x+) = q

If f(tn) → q as tn → x+

We define the Left-hand limit as:

f(x−) = q

As f(tn) → q as tn → x−

Then, limt→xf(t) exists if and only if f(x+) = f(x−) = limt→xf(t). And a function
is continuous if and only if f(x+) = f(x−) = f(x).

Definition 8.0.5. A function f : (a, b) → R. f is monotonically increasing on (a, b)
if a < x < y < b implies that f(x) ≤ f(y). If f(x) ≥ f(y), then the function is
monotonically decreasing. In either case, the function is monotone.

Theorem 8.0.14. Let f be monotonically increasing on (a, b). Then, f(x+) and f(x−)
exist at every point of x ∈ (a, b).

Proof.

Theorem 8.0.15. If f : [a, b] → R is monotone function. Then, the set of points at
which f is discontinuous is at most countable.

Proof.
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8.1 Continuity of correspondences

Recall that a correspondence1 is a set-valued function, namely a function that maps
points in the domain to not empty subsets of the co-domain. Then, considering two
metric spaces (Θ, dΘ) and (X, dX):

ψ : Θ ⇒ X

Let’s note that:

• A function is a special case of correspondence, namely when the set is a singleton

• We can write any correspondence in functional notation. Denoting 2B the set of
all subsets of B, then we can write:

f : A→ 2X

Some concepts pertaining to correspondences are the following.

Definition 8.1.1. Let Θ ⊆ Rn and X ⊆ Rl. A correspondence ψ : Θ ⇒ X is said to
be:

• closed-valued at θ ∈ Θ if ψ(θ) is a closed set. If it is closed valued at all θ ∈ Θ,
then ψ(·) is closed-valued.

• compact-valued at θ ∈ Θ if ψ(θ) is a compact set. If it is compact valued at all
θ ∈ Θ, then ψ(·) is compact-valued.

• convex-valued at θ ∈ Θ if ψ(θ) is a convex set. If it is convex valued at all
θ ∈ Θ, then ψ(·) is convex valued.

Definition 8.1.2. The graph of a correspondence, denoted Gr(ψ), is defined as:

Gr(ψ) =
{
(θ, s) ∈ Θ× S : s ∈ ψ(θ)

}
Notice that Gr(ψ) ⊆ Rn × Rl.

Definition 8.1.3. The correspondence is said to be closed-graph if Gr(ψ) ⊆ Rn×Rl

is closed (namely that for all converging sequences θm in Θ, it exists a converging
sequence sm in ψ(θm) such that s ∈ ψ(θ).)

Definition 8.1.4. The correspondence is said to be convex-graph if Gr(ψ) ⊆ Rn×Rl)
is convex.

A closed-graph correspondence is a closed value, but the opposite may not be true.
The same for convex-graph correspondences. Let’s see the following example:

1Most of this section and examples are based on Sundaram 1996, 224 et ss.
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Example 8.1.1. Let θ = X = [0, 1], and define ψ(θ) =

ψ(θ) =

{
{θ} 0 ≤ θ < 1

{0} θ = 1

The graph is represented in the following figure.

θ

ψ(θ)

1

The correspondence is compact. But it is not closed graph. Indeed, if we take the
sequence {xm, sm} = {1 − 1

m
, 1 − 1

m
}, this is in the graph. But it converges to (1, 1),

which is not in the graph.

Definition 8.1.5. Let Θ ⊆ Rn and X ⊆ Rl and a correspondence ψ : Θ ⇒ X. Let W
ba any set Rl. We define the upper inverse of W under ψ as:

ψ−1
+ (W ) =

{
θ ∈ Θ : ψ(θ) ⊆ W

}
and the lower inverse of W under ψ:

ψ−1
− (W ) =

{
θ ∈ Θ : ψ(θ) ∩W ̸= ∅

}
When the correspondence is single-valued, then lower and upper inverse coincide,

as well as with the definition of the inverse of a function.
Correspondences are important in economics because sometimes there can be more

than one solution to optimization problems. For example, if preferences are not strictly
convex, then we have a demand correspondence instead of a demand function.

For correspondences, a stronger notion of continuity is required than for a function.
A function f : X → S is continuous at x ∈ X if for all open sets V such that f(x) ∈ V ,
there is an open set U containing x such that, for all x′ ∈ X ∩ U , then f(x′) ∈ V .
Another way of seeing is that f(x) ∈ V ⇐⇒ f(x)∩ V = ∅. But this is not true if f(·)
is not a singleton any more.

Then, we have the following definitions.

Definition 8.1.6. A correspondence ψ : Θ ⇒ X is said to be upper-hemicontinuous
(or u.h.c) at a point θ ∈ Θ, if, for all open sets V such that ψ(θ) ∈ V , there exists
an open set U containing θ such that θ′ ∈ U ∩ Θ implies ψ(θ′) ⊂ V . Then, ψ is
upper-hemicontinuous on Θ if it u.h.c. for all θ ∈ Θ.
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A "intuitive way" of seeing it is that a correspondence which is not u.h.c. at θ
"blows up" in any neighborhood of θ, in the sense that part of ψ(θ) lies outside some
small open set containing it.

Example 8.1.2. Let Θ = X = [0, 2]. Define ψ : [0, 2] ⇒ [0, 2] as:

ψ(θ) =

{
{1} if 0 ≤ θ < 1

[0, 2] if 1 ≤ θ ≤ 2

θ

ψ(θ)

V

1

2

2

θ

U = θ + ϵ, θ − ϵ

θ′

Figure 8.1: A correspondence which is u.h.c. but not l.h.c.

This correspondence is u.h.c. Let’s see for θ < 1. Define the interval (ϵ+ θ, θ − ϵ).
Then ψ(θ) ⊂ V .Take θ′ ∈ U ∩ [0, 2], then ψ(θ′) ∈ V (since, in this case ψ(θ) = ψ(θ′)).
A similar reasoning holds for θ ≥ 1. Then, taking any open set around ψ(θ), there
exists an open set U containing θ such that θ′ ∈ U ∩ [0, 2] implies ψ(θ′) ∈ V . Then,
ψ(·) is upper hemi-continuous (See figure 1).

However, let’s see another example (figure 2). Let Θ = X = [0, 2]. Define ψ :
[0, 2] ⇒ [0, 2] as:

ψ(θ) =

{
{1} if 0 ≤ θ ≤ 1

[0, 2] if 1 < θ ≤ 2

Following the same argument as above, this correspondence is u.h.c for θ ≤ 1, as
well as for θ > 1. But for θ = 1, it is not. Indeed, we can find an open interval that
contains ψ(θ) but not ψ(θ′). Let’s see V =

(
2
3
, 4
3

)
. This contains ψ(1). But does not

contain any ψ(θ′), with θ′ > 1.
It is intuitive to see why graphically. In the graph of correspondence in Fig. 1, the

rectangular part is closed. Instead, in the graph of Fig. 2, it is not. Then, when θ = 1,
ψ(θ) "blows up".
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θ

ψ(θ)

V

1

2

2

Figure 8.2: A correspondence which is not u.h.c. but l.h.c

We can also define the lower hemi-continuity.

Definition 8.1.7. A correspondence ψ : Θ ⇒ X is said to be lower hemi-continuous
(l.h.c) at a point θ ∈ Θ, if, for all open sets V such that V ∩ ψ(θ) ̸= ∅, there exists an
open set U containing θ such that θ′ ∈ U ∩ Θ implies V ∩ ψ(θ′) ̸= ∅. Then ψ is lower
hemi-continuous on Θ if it is l.h.c. for all θ ∈ Θ.

As above, geometrically, the idea is that ψ(θ) does not shrink suddenly as we move
slightly away from θ.

Example 8.1.3. See the example in Figure 1. At θ = 1, consider the interval V =(
3
2
, 5
2

)
. V ∩ ψ(1) ̸= ∅, because ψ(1) = [0, 2]. But since any open U containing θ = 1

also contains θ < 1, then there is no open set U containing θ = 1 such that ψ(θ′)∩V ̸=
for all θ ∈ U ∩Θ. Indeed ψ(θ′) = {1} and {1} ∩

(
3
2
, 5
2

)
= ∅.

Similarly, in the case of the correspondence represented in Figure 2, at θ = 1,
ψ(θ) ∩ V ̸= ∅ if 1 ∈ V . Since for any θ′ ∈ Θ, 1 ∈ ψ(θ′), then ψ is l.h.c. at θ = 1.
Furthermore, it is l.h.c. at θ ̸= 1, so it is l.h.c. on Θ.

Definition 8.1.8. A Correspondence ψ : Θ ⇒ X is continuous at θ ∈ Θ if it is both
l.h.c. and u.h.c. It is continuous on Θ if it is l.h.c. and u.h.c. for all θ ∈ Θ.

A result that links the l.h.c. of correspondence with the upper inverse is the follow-
ing:

Proposition 9. ψ : Θ ⇒ X is upper hemi-continuous if and only if ψ−1
+ (G) is open in

Θ for every G that is open in X.

Proof. Let’s see that u.h.c. implies open upper inverse. By definition of u.h.c., for all
open sets V containing ψ(θ), then there exists an open set U containing θ such that
θ′ ∈ U ∩Θ implies ψ(θ′) ⊂ V . Instead, the upper inverse is ψ−1

+ (G) = {θ ∈ Θ : ψ(θ) ⊂
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G}. Assume u.h.c. holds, but not the openness of ψ−1
+ (G). The latter implies that, for

G open, ψ−1
+ (G) is not open. Define G = V . If ψ−1

+ is not open, then (by definition of
open set), Nϵ(θ) ̸⊂ ψ−1

+ (V ). Then, for θ′ ∈ Nϵ(θ), ψ(θ′) is not in V . But this contradicts
u.h.c.

Let’s see now that the upper inverse implies u.h.c. LetG be an open set that contains
ψ(θ). Then Nϵ(ψ(θ)) ⊆ G. Let G = V and U ∩Θ = ψ−1

+ (G), Then θ ∈ ψ−1
+ (G) implies

ψ(θ) ⊂ G. Since ψ−1
+ (G) is open, then Nϵ(θ) ⊂ ψ−1

+ (G), ∀ϵ > 0. Take θ′ ∈ Nϵ(θ). Then
θ′ ∈ ψ−1

+ . Therefore ψ(θ′) ∈ G.

A similar result states that a correspondence is u.h.c. if and only if the lower inverse
ψ−1
− (F ) is closed in Θ for every F closed in X.

For lower hemi-continuity, we have the following result.

Proposition 10. ψ : Θ ⇒ X is lower hemi-continuous if and only if ψ−1
+ (G) is closed

in Θ for every G that is closed in X.

Proof.

Sometimes, it can be useful to characterize u.h.c. and l.h.c. in terms of converg-
ing sequences instead of open sets. However, this last characterization is less general
because for u.h.c. it requires ψ(·) to be compact-valued.

Proposition 11. Let ψ : Θ ⇒ X be a compact-valued correspondence. Then ψ is u.h.c.
at θ ∈ Θ if and only if for all sequences θn → θ ∈ Θ and for all sequences sn ∈ ψ(θn),
there is a subsequence snk

of sn such that snk
converges to some s ∈ ψ(θ).

Proof. Let’s show first that ψ(·) compact-valued and u.h.c. implies convergence. Take
θn → θ and sn ∈ ψ(θ),∀n, we need to show that:

1. it exists snk
→ s

2. s ∈ ψ(θ)

ψ(·) is compact-valued, means that ψ(θ) is a compact set. Take sn ∈ ψ(θ). Since it
is a sequence in a compact set, it has a convergent subsequence snk

(by the sequential
definition of compactness). This proves 1). To see 2), let’s say s /∈ ψ(θ). Then, there
it is also not in a closed set G containing ψ(θ). But ψ(θn) ∈ G, and snk

∈ G. Since
snk

→ s, and G is closed, then s ∈ G. Then, we have a contradiction.
Let’s show now that convergence and compact-valued imply u.h.c. Suppose θn → θ,

sn ∈ ψ(θn) and snk
→ s ∈ ψ(θ). Suppose ψ(·) is not u.h.c. Then, there exists an open

set containing ψ(θ) such that, for all open U containing θ, there exists θ′ ∈ U ∩Θ and
ψ(θ′) ̸⊂ V . Let Um be Nϵ(θ), with ϵ = 1

m
m = 1, 2...., and θm ∈ Um ∩ Θ such that

ψ(θn) ̸⊂ V . Take sm ∈ ψ(θm), sm ̸∈ V . θm → θ, by construction. Since sm ∈ ψ(θm),
then smk

→ s ∈ ψ(θ). But sm ̸∈ V , for each m, V is open and therefore s ̸∈ V . This
contradicts ψ(θ) ⊂ V .
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Proposition 12. Let ψ : Θ ⇒ X be a correspondence. Then ψ(·) is l.h.c. at θ if and
only if for any sequence θn ∈ Θ, such that θn → θ, and any s ∈ ψ(θ), there exists a
sequence sn ∈ X such that sn ∈ ψ(θn), and sn → s.

Proof. We show only the first part, l.h.c. implies convergence. Let’s take ψ(·) l.h.c at
θ, and let θn → θ and s ∈ ψ(θ). For each k ∈ N, defines Uk as the neighborhood of θ
such that ψ(θ) ∩ Nϵ(s) ̸= ∅, ∀θ′ ∈ Uk ∩ Θ. Define a sequence n1 < n2 < . . . nk−1 < nk

and θn ∈ Uk, for all n > nk. Then, we can define sn: if n < n1, sn ∈ X, otherwise
sn ∈ ψ(θn) ∩Nϵ. Notice that this is not empty because θn ∈ Uk. Then, sn → s.

To conclude, there are several properties of u.h.c. and l.h.c. correspondences.

Proposition 13. Let ψ : Θ ⇒ X be a u.h.c. correspondence, where Θ ∈ Rn and
X = Rl. Then:

1.
⋃n

i=1 ψi is u.h.c. if ψi are u.h.c.

2. if ψ1 and ψ2 are u.h.c. and closed valued, then ψ1 ∩ ψ2 is u.h.c. and not empty
for all θ ∈ Θ

3. ψ ◦ ϕ of two u.h.c. correspondences is u.h.c.

Proof.

Proposition 14. Let ψ : Θ ⇒ X be a l.h.c. correspondence, where Θ ∈ Rn and XRl.
Then:

1.
⋃n

i=1 ψi is l.h.c. if ψi are l.h.c.

2. If ψi,i = 1, 2 are two l.h.c. convex-valued correspondences such that ψ1 ∩ ψ2 ̸= ∅,
then ψ1 ∩ ψ2 is l.h.c.

3. ψ ◦ ϕ of two l.h.c. correspondences is l.h.c.

Proof.
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Chapter 9

Differentiation

9.1 Differentiation with One Variable

Definition 9.1.1. Let f : E → R where E ⊆ R. For any x ∈ E, if, for any sequence
{xn} → x such that xn ̸= x,∀n, and:

lim
xn→x

f(xn)− f(x)

xn − x

exists, then f is called differentiable at x. This limit is called the derivative of f(x),
that is, f ′(x).

Differentiation is just approximating a function with a linear function. Furthermore,
f is differentiable, then f ′(x+) = f ′(x−). In other words, kinks are ruled out.

Theorem 9.1.1. Let f : E → R where E ⊆ R. Both f and g are differentiable. Then
the following properties hold:

1. [f(x) + g(x)]′ = f(x)′ + g(x)′

2. [f(x) · g(x)]′ = f(x)′ · g(x) + f(x) · g′(x) (Leibniz Theorem)

3.
(f(x)
g(x)

)′
= f ′(x)·g(x)−f(x)·g′(x)

g(x)2

Proof. Let’s see 1). Let h = f + g. So we have:

h(x+ t)− h(x)

t
=

f(x+ t)− f(x) + g(x+ t)− g(x)

t
= (taking the limit, as t→ 0)

h′(x) = [f(x) + g(x)]′ = f(x)′ + g(x)′

Let’s see 2). Let h = f · g. Then, x, x+ t ∈ E, we have:

h(x+ t)− h(x)

t
=

[f(x+ t)− f(x)]g(x) + f(x)[g(x+ t)− g(x)]

t
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Taking the limit t→ 0:

h′(x) = f ′(x) · g(x)− f(x) · g(x)

Let’s see 3). Let h = f
g
.

Theorem 9.1.2. Let f : E → R, where E ⊆ R. If f is differentiable at x, it is continuos
at x.

Proof.

Theorem 9.1.3. (Chain Rule) Let f : E → R and g : D → R, where D,E ⊆ R and
D ⊆ f(E). f, g are both differentiable ∀x. Let h(x) = (g ◦f)(x), then h is differentiable
and its derivative is:

h′(x) = [g′(f(x)] · f ′(x)

Proof. Fix x ∈ E. Let y = f(x). t ∈ E, and s = f(t). Then we have:

f(t)− f(x) = (t− x)[f ′(x) + u(t)]

g(s)− g(y) = (s− y)[g′(y) + v(s)]

Where limt→x u(t) = lims→y v(s) = 0. Then we have:

h(t)− h(x) = g(f(t)− g(f(x)) = [f(t)− f(x)][g′(y) + v(s)]

(t− x)[f ′(x) + u(t)][g′(y = +v(s)]

For t ̸= x.
h(t)− f(x)

t− x
= [g′(y) + v(s)][f ′(x) + u(t)]

Since f is continuous, as t→ x, s = f(t) → y = f(x), so:

h′(x) = g′(f(x))f ′(x).

Definition 9.1.2. Let f be a real-valued function on some metric space X. f has a
local maximum at a point p ∈ X if there exists a δ > 0 such that f(x) ≤ f(p),∀x ∈
Nδ(x). f has a local minimum at a point q ∈ X if there exists a δ > 0 such that
f(x) ≥ f(q),∀x ∈ Nδ(x).

A global maximum can be a local maximum, but the opposite is not true.

Theorem 9.1.4 (Necessary conditions for Interior Max). Let f be a real-valued, con-
tinuous function on E ⊆ R. If f has a local maximum x0 ∈ int(E), and if f ′(x0) exists,
then f ′(x0) = 0.
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Proof. Suppose x0 ∈ int(E) is a local max. Then, there is a δ > 0 such that Nδ(x0) ⊆
int(E). Take a sequence {an} → 0, 0 < an < δ. Then:

f(x+ an) + f(x)

an
≤ 0

Take a sequence {bn} → 0, such that bn < 0 and −bn < δ. We have:

f(x0 + bn)− f(x0)

bn
≥ 0

Since f is differentiable, we have:

lim
n→∞

f(x0 + an)− f(x0)

an
= lim

n→∞

f(x0 + bn)− f(x0)

bn
= f ′(x0) = 0

Theorem 9.1.5. (Rolle’s Theorem) Let f : [a, b] → R, f differentiable of (a, b). Then,
if f(a) = f(b), it exists a c ∈ (a, b) such that f ′(c) = 0

Proof. If f is continuous, f([a, b]) is compact, so f has both a max xM and a min xm
on [a, b]. Then f(xm) ≤ f(a) ≤ f(xM). We have three cases:

1. f(xm) = f(a) = f(xM), then the function is constant: f ′(x) = 0

2. f(xm) < f(a) = f(b), then the minimum xm ∈ (a, b) and f ′(xm) = 0

3. f(xM) > f(a) = f(b), then the max xM ∈ (a, b) and f ′(xM) = 0

In each case, at least one point c ∈ (a, b) is equal to 0.

Theorem 9.1.6. (Mean Value Theorem) Let f be a real-valued differentiable function
on E ⊆ R. If there are a, b ∈ R such that a < b, then it exists c ∈ (a, b) such that
f ′(c)(b− a) = f(b)− f(a), and:

f ′(c) =
f(b)− f(a)

b− a

Proof. Define:

g(x) = f(x)− f(b)− f(a)

b− a
· (x− a)

Which is continuous and differentiable in x. Then:

g(a) = f(a)− f(b)− f(a)

b− a
· (a− a) = f(a)

g(b) = f(b)− f(b)− f(a)

b− a
· (b− a) = f(b)− f(b) + f(a) = f(a)
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By Rolle’s theorem, it exists a c ∈ (a, b) such that g′(c) = 0:

g(c) = f(c)− f(b)− f(a)

b− a
· (c− a) = 0 ⇒

g′(c) = f ′(c)− f(b)− f(a)

b− a
= 0

f ′(c) =
f(b)− f(a)

b− a

Corollary 9.1.6.1. Suppose f is a real-valued function, and it is differentiable in (a, b).
The following properties hold:

1. If f ′(x) ≥ 0, for all x ∈ (a, b), then f is increasing

2. If f ′(x) ≤ 0, for all x ∈ (a, b), then f is decreasing

3. If f ′(x) = 0, for all x ∈ (a, b), then f is constant

Proof. Assume a < x < y < b, then it exists, by MVT, a z ∈ (x, y) such that:

f(y)− f(x) = f ′(z)(y − x)

Which is strictly positive (negative) when f ′(z) > (<)0,∀z ∈ (a, b).

Theorem 9.1.7 (Cauchy’s mean value theorem). Let f and g be two real-valued func-
tions, continuous on [a, b] and g(a) ̸= g(b). Both are differentiable on (a, b) and
g′(x) ̸= 0,∀x ∈ [a, b]. Then, there is a c ∈ (a, b) such that:

f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)

Proof. Let h(x) = f(x)− f(b)−f(a)
g(b)−g(a)

· g(x). Then:

h(a) =f(a)− f(b)− f(a)

g(b)− g(a)
· g(a) =

=
f(a)g(b)− f(a)g(a)− f(b)g(a) + f(a)g(a)

g(b)− g(a)
=

=
f(a)g(b)− f(b)g(a)

g(b)− g(a)
= h(b)

By Mean Value Theorem, there exists a c ∈ (a, b) such that:

h′(c)(b− a) =
[
f ′(c)− f(b)− f(a)

g(b)− g(a)
g′(c)

]
(b− a) = 0

f ′(c)(b− a) = g′(c)
f(b)− f(a)

g(b)− g(a)
(b− a) =

f ′(c)

g′(c)
=
f(b)− f(a)

g(b)− g(a)
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Theorem 9.1.8 (L’Hopital rule). Suppose f and g are both continuous, real-valued
functions on [a, b] and differentiable on (a, b). Suppose that:

• f(x) = g(x) = 0

• f ′(x) ̸= 0,∀x

As xn → x ∈ (a, b), the limit of f(xn)
g(xn)

exists, then:

lim
xn→x

f(xn)

g(xn)
= lim

xn→x

f ′(xn)

g′(xn)

Proof.

lim
xn→x

f(xn)

g(xn)
= lim

xn→x

f(xn)− 0

g(xn)− 0
=

lim
xn→x

f(xn)− f(x)

g(xn)− g(x)
= lim

xn→x

f(xn)−f(x)
xn−x)

g(xn)−g(x)
xn−x

=
f ′(x)

g′(x)

Definition 9.1.3. If f has a derivative f ′ on an interval, f ′ is a real-valued function.
If f ′ is also differentiable, we denote it as:

f ′′(x) = lim
xn→x

f ′(xn)− f ′(x)

xn − x

f ′′ is called the second derivative for f . We can obtain derivatives f (3), f (4), . . . , f (n)

whenever they exist. f is rth-order differentiable, if f (r) derivative exists. f is smooth
if it is infinitely differentiable.

Theorem 9.1.9 (Taylor’s Formula). Let f : R → R and assume that f (i) exists for
i = 1, 2, . . . , n. For any x0 ∈ R and h > 0, we have:

f(x0 + h) = f(x0) +
n−1∑
k=1

f (k)(x0)

k!
(x− x0)

k + rn

where rn = f (n)(z)
n!

hn for some z ∈ (x0, x0 + h)

Proof.

Taylor’s formula represents the value of f(x) around x0 by:

• f(x0), a constant number

• f ′(x0)(x− x0), a linear function

• f ′′(x0)
2

(x− x0)
2, a quadratic function
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• rn = f (n)(z)
n!

hn, a residual, where x ∈ (x0, x0 + h) becomes smaller as n→ ∞.

Then, smooth functions can be approximated by finite polynomials. For example, when
n = 2:

f(x0 + h) ≈ f(x0) + f ′(x0)(x− x0) +
f ′′(x0)(x− x0)

2

2!

9.2 Differentiation with many variables

Definition 9.2.1. Let f : Rn → Rm.

f(x) =


f1(x)
f2(x)

...
fm(x)

 =


f1(x1, x2, x3, . . . , xn)
f2(x1, x2, x3, . . . , xn)

...
fm(x1, x2, x3, . . . , xn)


f1, f2, . . . , fm are called Component functions of f . fi : Rn → R

The general idea is still that of approximating a function by an affine linear function.
Just, if in the single variable case, we approach x from left and right, now we can do it
in many directions.

Definition 9.2.2. The bfpartial derivative of f with respect to xi, at x is defined as:

∂f

∂xi
= lim

t→0

f(x1, . . . , xi−1, xi + t, xi+1, . . . , xn)− f(x1, . . . , xi, . . . , xn)

t

whenever it exists. The matrix of the first partial derivatives of the component functions
of f is called the Jacobian of f .

J(x) =
[

∂f
∂x1

∂f
∂x2
, . . . , ∂f

∂xn)

]
=


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn...

... . . . ...
∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn


Definition 9.2.3. The directional derivative of f : Rn → Rm in the direction of u
at the point x is defined by:

Df(x;u) = lim
t→0

f(x+ tu)− f(x)

t

Where t ̸= 0 and u ̸= 0

If u = ei, then Df(x;u) = ∂f
∂xi

In general:

Dif(x;u) =
n∑

i=1

∂f

∂xi
ui
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Notice, however, that, differently from the case on one variable, it is not true that
differentiability implies continuity. Partial derivatives can exist and still, the function
is not continuous. For example:

f(x, y) =

{
xy

x2+y2
if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0)

Then the partial derivatives are (0, 0) in (0, 0) and ( y
2x
, x
2y

otherwise. Approaching (0, 0)

along x = y, then fx(x, y) = fy(x, y) if x = y but f(0, 0) = 0.
A more comprehensive definition of differentiability is the following:

Definition 9.2.4. A function f : E → Rm where E ⊆ Rn is differentiable at x ∈ E
if it exists a matrix Ax such that:

∥f(x+ h)− f(x)− Axh∥
∥h∥

→ 0

As ∥h∥ → 0, where h ∈ Rn. If f is differentiable at every x ∈ E, then f is differentiable
on E and we can define the total derivative of f as the function Df(x) : E → Rm×n

such that:
Df(x) = Ax, ∀x ∈ E

Theorem 9.2.1. A function f : E → Rm, where E ⊆ Rm

1. f is differentiable at x ∈ E, then each of its component functions is differentiable
at x

2. If f is differentiable at x, then the partial derivatives of the component functions
exist at x, and the derivative of f at x equals the Jacobian:

Df(x) = J(x)

Proof.

Theorem 9.2.2 (Young’s theorem). Suppose f is a real-valued function on E ⊆ Rn

and D2f(x∗) exists at x̄ ∈ E. Then:

∂f(x∗)

∂xi∂xj
=
∂f(x∗)

∂xj∂xi

Then, D2f(x∗) is a symmetric matrix.

Proof.

Theorem 9.2.3. A function f : E → Rn. If the partial derivatives of all component
functions exist, and they are continuous at x, then f is differentiable at x.
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Proof.

Definition 9.2.5. Suppose f is a real-valued function on E ⊆ Rn, and it is differen-
tiable. The gradient vector of f is defined as follows:

∇f(x) =


∂f
∂x1...
∂f
∂xn

 ∈ Rn

The second derivative:

D2f(x) = D[∇f(x)] =


∂2f1
∂x2

1

∂2f1
∂x1x2

. . . ∂2f1
∂x1xn

∂2f2
∂x2x1

∂2f2
∂x2

2
. . . ∂2f2

∂x2xn

...
... . . . ...

∂2fn
∂x1xn

∂2fn
∂xnx2

. . . ∂2fn
∂x2

n


D2f(x) is called Hessian Matrix of f .

Theorem 9.2.4. (Chain Rule) Suppose that E ⊆ Rn, B ⊆ Rp, f : E → Rp is differ-
entiable at x ∈ E and g : B → Rm at y = f(x) ∈ B. Let h(x) = g ◦ f(x). then h is
differentiable at x and:

Dh(x) = Dg(f(x)Df(x)

Proof.

Theorem 9.2.5. Suppose f : Rn → R is differentiable. Then there exists a c =
(1− λ)a+ λb, λ ∈ (0, 1) such that:

f(b)− f(a) = Df(c)(b− a)

Proof. Let g(t) = f((1− t)a+ tb) for t ∈ R, so g is differentiable. Then:

g′(t) = Df((1− t)a+ tb)(b− a)

g(0) = f(a) and g(1) = f(b). Thus, it exists a λ ∈ (0, 1) such that:

g(1)− g(0) = g′(λ)(1− 0)

Then:
f(b)− f(z) = Df((1− λ)a+ λb)︸ ︷︷ ︸

c

(b− a)

Definition 9.2.6. A differentiable function f : E → Rm, where E ⊆ Rn is said to be
continuosly differentiable if Df is continuous on E. We denote it as f ∈ C1.

If f ∈ C∞, we say that f is smooth.
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Theorem 9.2.6 (Taylor’s Formula). Suppose that f : Rn → R is C2. For x, x+h ∈ Rn,
there exists a λ ∈ (0, 1) such that:

f(x− h) = f(x) +Df(x)h+
1

2
hTD2f(x+ λh)h

Proof.

Suppose that f(x, y) ∈ C2. Then, by Taylor’s formula, the first order approximation
at (x∗, y∗) is:

f(x∗, y∗) = fx(x
∗, y∗)(x− x∗) + fy(x

∗, y∗)(y − y∗)

9.2.1 Homogeneity

Definition 9.2.7. A real valued function f : Rn → R is homogeneous of degree
z ∈ Z, if, for t > 0, we have:

f(tx1, tx2, . . . , txn) = trf(x1, x2, . . . , xn)

When r = 1, f exhibits constant returns to scale.

Theorem 9.2.7. Let f be a real-valued function of Rn, and it is homogeneous of de-
gree r. Then, for any i = 1, 2, . . . , n, the partial derivative function ∂f(x1,x2,...,xn)

∂xi
is

homogeneous of degree r − 1.

Proof. Let t > 0. Then since:

f(tx1, tx2, . . . , txn) = trf(x1, x2, . . . , xn)

We have:
f(tx1, tx2, . . . , txn)− trf(x1, x2, . . . , xn) = 0

Taking the derivative with respect to xi, we have:

∂f(tx1, tx2, . . . , txn)

∂xi
t− tr

∂f(x1, x2, . . . , xn)

∂xi
= 0

So:
∂f(tx1, tx2, . . . , txn)

∂xi
= tr

∂f(x1, x2, . . . , xn)

∂xi
· 1
t

∂f(tx1, tx2, . . . , txn)

∂xi
= tr−1∂f(x1, x2, . . . , xn)

∂xi

Theorem 9.2.8 (Euler’s Theorem). Let f be a real-valued function of Rn, and it is
homogeneous of degree r and differentiable. Then at any x̄ = (x̄1, x̄2, . . . , x̄n), we have.

n∑
i=1

∂f(x̄1, . . . , x̄n)

∂xi
· x̄n = rf(x̄1, . . . , x̄n)
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Proof. Let t > 0, we have:

f(tx1, tx2, . . . , txn)− trf(x1, x2, . . . , xn) = 0

Differentiating with respect to t, we have:

n∑
i=1

∂f(tx̄1, . . . , tx̄n)

∂xi
· x̄i − rtr−1f(x1, x2, . . . , xn) = 0

With t = 1, then we have Euler’s formula.

9.2.2 Implicit Function Theorem

An explicit function is a function of the form y = f(x). An equation of the form
f(x, y) = c is called implicit function. However, it is not always true that an implicit
function exists. Then, the question is under which conditions we can express y as an
explicit function of x (or vice-versa).

A straightforward example in economics is that of indifference curves u(x, y) = c,
If we can write y = y(x), this implies how the consumption of y changes with the
consumption of x to maintain the same level of utility c. If y(·) is differentiable, then
we can take the derivative of u(x, y(x)) with respect to x and we have:

ux(x, y(x)) + uy(x, y(x))y
′(x) = 0

At (x0, y0), we have:
dy(·)
dx

= −ux(x0, y0)
uy(x0, y0)

The simplest example of a function that cannot be written in explicit form is the
equation of the circle (of radius 1), x2 + y2 = 1.

Theorem 9.2.9 (Implicit Function Theorem: 2 variables case). Let (x0, y0) ∈ R2 be a
point such that f(x0, y0) = c. Then:

1. If f is C1 (continuously differentiable)

2. if fy(x0, y0) ̸= 0

Then f(x, y) = c define a C1 implicit function y = y(x) in some neighborood of (x0, y0)
and:

dy(x)

dx
= −fx(x0, y0)

fy(x0, y0)
.

Notice that this result holds only in the neighborhood of (x0, y0).
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Proof. The first step is that of constructing an implicit function. Assume that fy(x0, y0)α >
0. Since f is continuous, it exists a, b > 0 such that fy(x, y) >
fracalpha2, ∀x, y ∈ Ba,b = [x0 + a, x0 − a]× [y0 + b, y0 − b]. Because fy(x, y) > 0, f is
strictly increasing in y. Furthermore, since f is continuous, we can construct an open
neighborhood around (x0, y0 + b) = D1 and one around (x0, y0 − b) = D1 such that:

f(x, y) > 0, (x, y) ∈ D1

f(x, y) < 0, (x, y) ∈ D2

And it exists a c > 0 such that, ∀x ∈ (x0 − c, x0 + c):

f(x, y0 + b) > 0

f(x, y0 − b) < 0

Fix x. Because f(x, y) is strictly increasing in y, it exists an unique y ∈ (y0 − b, y0 + b)
such that f(x, y) = 0. Name this mapping y(x) = y. This is the implicit function
around x0.

Let’s prove that the implicit function is continuous. Pick x̂ ̸= x ∈ (x0 − c, x0 + c),
and ŷ = y(x̂) and y = y(x), so:

f(x, y) = f(x̂, ŷ)

By the generalized mean value theorem, it exists λ ∈ (0, 1) such that:

0 = f(x, y)− f(x̂, ŷ) =

Df(xλ, yλ)

[
x− x̂
y − ŷ

]
=

fx(x
λ, yλ)(x− x̂) + fy(y − ŷ)(y − ŷ)

Where xλ, yλ are convex combinations of (x, x̂) and (y, ŷ). Rearranging, we have:

y(x)− y(x̂) = y − ŷ = −fx(x
λ, yλ)

fy(xλ, yλ)
(x− x̂)

Since f is continuous in Ba,b, max f exists, and let’sdefine the maximum as M . Also
fy ≥ α

2
in Ba,b. Hence:

|y(x)− y(x̂)| =
∣∣∣fx(xλ, yλ
fy(xλ, yλ

∣∣∣|x− x̂| ≤ 2M

α
|x− x̂|

As x→ x̂, y(x) → y(x̂) and therefore y(·) is continuous.
The final step is to prove that the implicit function is differentiable. Since:

y(x)− y(x̂) = y − ŷ = −fx(x
λ, yλ)

fy(xλ, yλ)
(x− x̂)
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Dividing both sides by x− x̂ and taking the limit x→ x̂, we have:

lim
x̂→x

y(x)− y((̂x)

x− x̂)
= − lim

x̂→x

fx(x
λ, yλ)

fy(xλ, yλ)
=
fx(x, y)

fy(x, y)

Because, as x̂→ x, (xλ, yλ) → (x, y).

Theorem 9.2.10 (Implicit Function Theorem: general version). Let f : X × Y → Rn

where X ⊆ Rm and Y ⊆ Rm and Y ⊆ Rn. Let (x0, y0) ∈ Rm×n be a point such that
f(x0, y0) = c, where f is C1. If Dyf(x

0, y0) is a invertible n× n. Then there are open
sets U, V with x0 ∈ U ⊆ X and y0 ∈ V ⊆ Y and a C1 onto function y : U → V such
that:

f(x, y(x)) = c,∀x ∈ U

and, at (x0, y0)
Dxy(x) = −[Dyf(x, y)]

−1Dxf(x, y)

or: 
∂y1(x)
∂x1

. . . ∂y1(x)
∂xm...

...
...

∂yn(x)
∂x1

. . . ∂yn(x)
∂xm


︸ ︷︷ ︸

n×m

= −


∂f1(x,y)

∂y1
. . . ∂f1(x,y)

∂yn
...

...
...

∂fn(x,y)
∂y1

. . . ∂fn(x,y)
∂yn


−1

︸ ︷︷ ︸
n× n


∂f1(x,y)

∂x1
. . . ∂f1(x,y)

∂xm...
...

...
∂fn(x,y)

∂x1
. . . ∂fn(x,y)

∂xm


︸ ︷︷ ︸

n×m

Proof.
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Chapter 10

Concave Functions

10.1 Convex sets

Definition 10.1.1. The set A ⊆ Rn is convex if for any x, y ∈ A and λ ∈ (0, 1),
λx+ (1− λ)y ∈ A. It is strictly convex if λx+ (1− λ)y ∈ int(A) for λ ∈ (0, 1).

Theorem 10.1.1. If A1, A2, . . . , An ∈ Rn are convex, then A1 × A2 × An is convex

Proof.

Theorem 10.1.2. The intersection of convex sets is convex

Proof.

The union of two separated convex sets is not convex.

Definition 10.1.2. For any x1, x2, . . . , xn ∈ A, y is their convex combination if for
some λi ∈ [0, 1], i = 1, 2, . . . , n such that

∑n
i=1 λi = 1 and:

y =
n∑

i=1

λixi

Then, if A contains every convex combination of its elements, then it must be convex.

Theorem 10.1.3. A set is convex if and only if it contains every convex combination
of its elements.

Proof.

10.2 Concave Functions

Definition 10.2.1. Suppose E ⊆ Rn is convex. A function f : E → R is concave if:

f(λx+ (1− λ)x′) ≥ λf(x) + (1− λ)f(x′), ∀λ ∈ [0, 1],∀x.x′ ∈ E.

If the equality is strict, the function is said to be strictly concave.

63



The definition of a convex function is symmetric:

Definition 10.2.2. Suppose E ⊆ Rn is convex. A function f : E → R is convex if:

f(λx+ (1− λ)x′) ≤ λf(x) + (1− λ)f(x′), ∀λ ∈ [0, 1],∀x, x′ ∈ E.

If the equality is strict, the function is said to be strictly convex.

Another way of defining concavity is to say:

f(x) + f ′(x)(x′ − x) ≥ f(x′)

Where the first term is the supporting affine function at f(x) and x, x′ ∈ E.
Besides, the graph of a function can be written as:{

(x, y) ∈ Rn+1 : x ∈ E, y = f(x)
}

Definition 10.2.3. Let f : E → R, E is convex. We call the hypograph of f as:{
x, y) ∈ Rn+1 : x ∈ E, y ≤ (f(x)

}
and the epigraph as: {

x, y) ∈ Rn+1 : x ∈ E, y ≥ f(x)
}

epi(f)

x

hyp(f)

x

Figure 10.1: The epigraph and the hypograph

Theorem 10.2.1. Let f : E → R, E ⊆ Rn is convex. Then:

1. f is concave if and only if its hypograph is convex

2. f is convex if and only if its epigraph is convex
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Proof. Let’s see 1) (⇒) Take any (x, y), (x′, y′) in hypograph, and λ ∈ [0, 1]. f is
concave, then:

f(λx′ + (1− λ)x)︸ ︷︷ ︸
xλ

≥ λf(x′) + (1− λ)f(x) ≥ λy + (1− λ)y′︸ ︷︷ ︸
xλ.

Then, yλ ≤ f(xλ). (xλ, yλ) ∈ hypograph, and the hypograph is convex.
(⇐) Take x, x′ ∈ E. Then:

(f(x), x), f(x′), x′) ∈ hypograph

Hypograph is convex, then we can write:

(λf(x′) + (1− λ)f(x), λx′ + (1− λ)x) ∈ hypograph

So:
λf(x′) + (1− λ)f(x) ≤ f(λx′ + (1− λ)x)

then f is concave.
The proof of 2) is symmetric.

Theorem 10.2.2. Let f : E → R is C1 where E ⊆ Rm is convex.f is concave if and
only if:

f(y) ≤ f(x) +Df(x)(y − x) ∀(x, y) ∈ E.

f is strictly concave if and only if the inequality is strict.

Proof.

This is a generalization of what was said above. Indeed, Df(x) is a 1 × n matrix,
x is a n× 1 vector. If n = 1, we have:

f(x) + f ′(x)(x′ − x) ≥ f(x′)

Theorem 10.2.3. Let f : E → R, f is C2, E ⊆ Rn is convex. Then:

1. f is concave if and only if D2f(x) is negative semidefinite for all x ∈ int(E)

2. If D2f(x) is negative definite for all x ∈ int(E), then f is concave.

Proof.

When n = 1, this simply means that:

• f ′′(x) ≤ 0, f is concave

• f”(x) < 0, f is strictly concave.
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To check for negative-(semi)definiteness, a way developed by Gerard Debreu in
1952 is that of looking at the determinant of the n-leading principal minors (across the
diagonal) of a square matrix, namely, the n k × k submatrices of A, that contains the
first k rows and columns.

Theorem 10.2.4. A n× n symmetric matrix A is:

1. Negative Definite if and only if (−1)k|Ak| > 0 for all k = 1 . . . , n.

2. Positive Definite if and only if |Ak| > 0 for all k = 1 . . . , n

Proof.

Notice that for negative definiteness, this means that |A1| < 0, |A2| > 0, |A3| < 0
and so on...

For semi-definiteness, things are more complicated. If, for example, a 3× 3 matrix
has |A1| > 0, |A2| > 0, |A3| = 0, this matrix can be positive definite or indefinite. In
this case, one has to look to all the principal minors, not only the leading one. If one
of them is negative, the matrix is indefinite. If none is negative, the matrix is positive
semi-definite.

For negative semi-definiteness, if none of the minors of odd order is positive and
none of the minors of even order is negative, then the matrix is negative semi-definite.
Otherwise, it is indefinite.

Finally, two important properties of concave functions:

Theorem 10.2.5. If a function f : E → R is concave, then it is continuous on int(E)

Proof.

Theorem 10.2.6. If a function f : E → mathbbR is concave, then f is differentiable
at every point on E except possibly at a set of points of Lebesgue measure zero.

Proof.

10.3 Quasi-Concave Functions

Quasi-concavity is a property less strict than concavity but which maintains some de-
sirable properties and behavior of Concave functions.

Definition 10.3.1. Let f : E ⊆ Rn be convex. A function f : E → R is quasi-
concave if:

f(λx+ (1− λ)x′) ≥ min{f(x′), f(x)} ∀x, x′ ∈ E,∀λ ∈ [0, 1]

If the inequality is strict, for all λ ∈ (0, 1), then we have strict quasi-concavity.
Symmetrically, A function f : E → R is quasi-convex if:

f(λx+ (1− λ)x′) ≤ max{f(x′), f(x)} ∀x, x′ ∈ E,∀λ ∈ [0, 1]

If the inequality is strict, for all λ ∈ (0, 1), then we have strict quasi-convexity.
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Then, if a function is quasi-concave, whenever f(x), f(x′) ≥ t, we have:

f(λx+ (1− λ)x′) ≥ t

A monotonic function is both quasi-concave and quasi-convex.

Theorem 10.3.1. Let f : E → R, E ⊆ Rn is convex. Then:

1. If f is concave, then it is quasi-concave

2. If f is convex, then it is quasi-convex

Proof. Let’s see that concavity implies quasi-concavity. If f is concave, then:

f(λx+ (1− λ)x′) ≥ λf(x) + (1− λ)f(x′) ∀x, x′ ∈ E,∀λ ∈ [0, 1]

≥ λmin{f(x), f(x)′}+ (1− λ){f(x), f(x′)}
≥ min{f(x), f(x′)}

This means

The converse of the result is not true

Theorem 10.3.2. f is quasi-concave and ϕ : R → R is a non-decreasing function, then
ϕ ◦ f is also quasi-concave. In particular, any monotone transformation of a concave
function is a quasi-concave function.

Proof. Pick x, y and λ ∈ [0, 1]. Because f is quasi-concave, we have:

f(λx+ (1− λ)y) ≥ min{f(x), f(y)}

Because ϕ is non-decreasing, then:

ϕ ◦ f(λx+ (1− λ)y) ≥ ϕ[min{f(x), f(y)}] = min{ϕ ◦ f(x), ϕ ◦ f(y)}

So ϕ ◦ f is quasi-concave.

This last result is important because concavity may not be preserved under mono-
tone transformation.

Another way of defining quasi-concavity involves the notion of contour set.

Definition 10.3.2. Take f : E → R. For each α ∈ R, the Upper contour set of f
is:

Uα =
{
x ∈ E : f(x) ≥ α

}
Symmetrically, the Lower Contour Set of f is:

Lα =
{
x ∈ E : f(x) ≤ α

}
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This last definition is extremely useful in Microeconomics. Defining a consumer’s
utility by u(x, y) = α, then:

• (x, y) ∈ Uα if and only if u(x, y) ≥ α

• (x, y) ∈ Lα if and only if u(x, y) ≤ α

• Lα ∩ Uα = {(x, y) ∈ R2
+ : u(x, y) = α}

Theorem 10.3.3. Suppose that f : E → R, where E ⊆ Rn is convex. Then:
1. f is quasi-concave if and only if the upper contour set of f is convex

2. f is quasi-convex if and only if the lower contour set f is convex
Proof. Let’s see 1) (⇒). f is quasi-concave. Fix α such that:

f(x), f(x′) ≥ α

Since f is quasi-concave, then:

f(λx+ (1− λ)x′) ≥ min{f(x), f(x′)} ≥ α

∀λ ∈ (0, 1). Therefore, λx+ (1− λ)x′ ∈ Uα.
(⇐) Suppose Uα is convex. For any x, x′ ∈ Uα, any convex combination λx + (1−

λ)x′ ∈ Uα. Define α = min{f(x), f(x′)}. Then:

f(λx+ (1− λx′) ≥ α = min{f(x), f ′(x)}

Theorem 10.3.4. Suppose f : E → R is C1, where E ⊆ Rn is convex. Then:
1. f is quasi-concave if and only if:

f(y) ≥ f(x) ⇒ Df(x)(y − x) ≥ 0

2. If, x ̸= y and f(y) ≥ f(x) ⇒ Df(x)(y − x) > 0, then f is strictly quasi-concave
Proof.
Theorem 10.3.5. (Arrow and Enthoven Theorem) Suppose that f : E → R is C2

where E ⊆ Rn is convex. Then:
1. If f is quasi concave on E, we have (−1k|Ck(x)| ≥ 0 for every k = 1, 2, . . . , n.

2. If (−1k(Ck(x)| > 0, for every k = 1, 2, . . . , n, then f is quasi-concave on E

And:

Ck(x) =


0 ∂f(x)

∂x1
. . . ∂f(x)

∂xk
∂f(x)
∂x2

∂2f(x)

∂x2
1

. . . ∂2f(x)
∂x1xk

...
... . . . ...

∂f(x)
∂xk

∂2f(x)
∂xkx1

. . . ∂2f(x)
∂xkxk


Is called Bordered Hessian Matrix.
Proof.
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Chapter 11

Optimization I

An optimization problem (max/min) has the following form:

v(θ) = max
x∈Γ(θ)

f(x, θ)

Where Γ(θ) ⊆ Rn is the constraint correspondence, θ are parameters, x are variables,
f is the objective function, and v is the value function. To denote the set of optimal
solutions, we write:

argmax
x∈Γ(θ)

f(c, θ) = {x ∈ Γ(θ) : f(x, θ) ≥ f(y, θ), ∀y ∈ Γ(θ)}

The questions to be addressed are:

• The existence and the uniqueness of the solutions

• the characterization of the solutions

• how to find a solution

• Comparative statics

The standard assumptions are usually:

• f is continuous

• Γ(θ) is non-empty

• Γ(θ) is compact, so, by Weierstraß theorem, a solution exists

• Since Γ(θ) ⊆ Rn, this is closed and bounded.
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11.1 Unconstrained Optimization

Unconstrained optimization simply means that constraints are not binding. Namely, it
is possible to move away from x∗ without leaving Γ.

Definition 11.1.1. Let f be a real-values continuous function on E ⊆ Rn. x∗ is a local
maximum of f if there exists a δ > 0 such that f(x∗) ≥ f(x), ∀x ∈ Nδ ∩ Γ. x∗ is a
global maximum if f(x∗) ≥ f(x), ∀x ∈ Γ.

Theorem 11.1.1. Let f be a real-valued continuous function on E ⊆ R. If f has a
local maximum (or minimum) at x0 ∈ int(Γ), and if f(x0) exists, then the First-order
conditions holds, i.e. f ′(x0) = 0

Proof.

Notice that this condition characterizes only interior optima. Furthermore, this
can be generalized to Rn.

Theorem 11.1.2. Let f be a real-valued C1 on E ⊆ Rn, If f has a local maximum or
minimum at x∗ ∈ int(Γ), then Df(x∗) = 0.

Proof. Suppose x∗ is an interior local max. Then, it exists δ > 0 such that, ∀x ∈
Nδ(x

∗), f(x∗) ≥ f(x). For each i = 1, 2, . . . , n define:

h(t) = f(x∗ + tei)

h(0) = f(x∗) and h(0) ≥ h(t) for |t| < δ for some δ > 0. Take a sequence tk → 0, then:

h(tk)− h(0)

tk
=
f(x∗ + tk

i)− f(x∗)

tk

and:
h′(0) =

∂(x∗)

∂xi
,∀i = 1, 2, . . . , n

Because Df(x∗) exists:

∂(x∗)

∂xi
= h′(0) = lim

tk→0+

h(tk)− h(0)

tk
= lim

tk→0−

h(tk)− h(0)

=
0

Then:
Df(x∗) = 0

FOCs are necessary but not sufficient for local maximum and minima. Besides,
they cannot identify optima on the boundary set of E.

Second-order necessary conditions for local maxima involve the definiteness of ma-
trices.
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Theorem 11.1.3. Suppose f : E → R is C2 and x∗ ∈ int(Γ). Then:

1. If x∗ is a local maximum, then D2f(x∗) is negative definite

2. If x∗ is a local minimum, then D2f(x∗) is positive definite

Proof. If x∗ is a local max, then it exists a δ such that ∀y ∈ Nδ, f(x∗) ≥ f(y), and
Df(x+) = 0. Take y = x+ ϵz, where z ̸= 0, and ϵ∥z∥ < δ. By Taylor’s expansion:

f(x∗ + ϵz)− f(x∗) = ϵDf(x∗)z︸ ︷︷ ︸
0

+
1

2
ϵ2 zTD2f(x∗ + αϵz))z︸ ︷︷ ︸

≤ 0, ∀ϵ < δ
∥z∥

≤ 0

For some α ∈ [0, 1]. As ϵ→ 0:

zTD2f(x∗ + αϵz))z → zTD2f(x∗)z ≤ 0

Theorem 11.1.4. Suppose f : E → R is C2 and x∗ ∈ int(Γ). Then:

1. If Df(x∗) = 0 and D2f(x∗) is negative definite, then x∗ is a strict local maxi-
mum

2. If Df(x∗) = 0 and D2f(x∗) is positive definite, then x∗ is a strict local minimum

If D2f(x∗) is negative (or positive) semidefinite, we cannot conclude anything on the
nature of x∗.

Proof. Because f is C2, if ztD2f(x∗)z < 0, it exists δ > 0 such that zTD2f(x)z < 0 for
x ∈ Nδ(x

∗). By Taylor’s formula and the FOCs:

f(x)− f(x∗) = Df(x∗)(x− x∗) +
1

2
(x− x∗)TD2f(x+ + (1− λ)(x− x∗))(x− x∗) < 0

for x ∈ Nδ(x
∗). Because D2 is continuous. Then:

D2f(x∗) < 0 ⇒ D2f(x) < 0,∀x ∈ Nδ(x
∗)

The sufficient second-order conditions that allow us to find all interior local optima
involve the concavity of functions.

Theorem 11.1.5. Suppose f : E → R is C2, E is convex, and f is concave. Then:

1. x∗ ∈ int(Γ) is a global maximum if and only if Df(x∗) = 0

2. the set of optimal solutions is also convex
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If f is strictly concave, x∗ such that Df(x∗) is the unique global max.

Proof. Let’s see 1). Notice that a global max is a local max. So we need only to prove
(⇒). By Taylor’s formula:

f(x)− f(x∗) = Df(x∗)(x− x∗)︸ ︷︷ ︸
0

+
1

2
(x− x∗)TD2f(λx∗ + (1− λ)x)(x− x∗)︸ ︷︷ ︸

≤ 0 by concavity

≤ 0

λ ∈ (0, 1).
Let’s see 2). If x1, x2 are optimal, then f(x1) = f(x2) = maxx f(x). By concavity:

f(λx1 + (1− λ)x2) ≥ λf(x1) + (1− λ)f(x2), ∀λ ∈ (0, 1)

Since E is convex, λx1 + (1− λ)x2 is feasible and optimal.

11.2 Optimization with Equality Constraints

This is a problem of the type:

max
x

f(x, y)

s.t. gi(x, y) = c i = 1, 2, . . . ,m
(11.1)

or:

min
x

f(x, y)

s.t. gi(x, y) = c i = 1, 2, . . . ,m
(11.2)

f : E ⊆ Rn is the objective function. g is the constraint. Both are C1. We can
write the Jacobian Matrix of the constraints as follows:

Dg(x1, . . . , xn) =


∂g1
∂x1

∂g1
∂x2

. . . ∂g1
∂xn...

... . . . ...
∂gm
∂x1

∂gm
∂x2

. . . ∂gm
∂xn


Constraints must satisfy the so-called non-degenerate constraints qualifica-

tions (NDCQ), at x∗ ∈ Γ. Namely, the m × n Jacobian matrix must have a m × m
invertible submatrix.

Another way of seeing constraint qualification is the following: the rank of the
Jacobian matrix of g(·) must be equal to the number of constraints. This can be easily
satisfied in the case of a linear function. In the case of a non-linear function, it means
that the matrix, evaluated at x∗, must be different from the zero-matrix (whose rank
is zero).
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Theorem 11.2.1. Let f, g be real-valued continuous function on E ⊆ Rn, and C1. x∗
is a local maximum, and NDCQ are satisfied at x∗. Then, there exists λ1, . . . , λm (one
for each constraint), such that we have the first order conditions:

DL(x) = Df(x∗) +
n∑

i=1

λigi(x
∗) = (0, . . . , 0)

L is called Lagrangian and λ1, . . . , λn are called Lagrangian multipliers.

Proof.

A "cookbook" procedure to solve equality-constrained optimization problems is the
following. The Lagrangian method involves three steps:

1. The first step is to set up the Lagrangian function:

L(x1, . . . , xn, λ) = f(x1, . . . , xn) +
m∑
i=1

λigi(x1, . . . , xn) i = 1, . . . , n

2. We find all the critical points of L. This is the set of points such that

DL(x, λ) = 0

This means to solve the following system with (n+ k) equations (n-variables and
k constraint): {

∂ L
∂xj

= 0 j = 1, . . . , n
∂ L
∂λi

= 0 ß = 1, . . . , k

3. We evaluate f at each critical point. The points at which f attains the maximum
(or the minimum) value are the optimal points.

Notice, however, that the FOCs are only necessary conditions for local max when
NDCQ holds. They are not sufficient.

11.3 Optimization with Inequality Constraints

This is a problem of the type:

max
x

f(x, y)

s.t. gi(x, y) ≥ 0 i=1,2,. . . ,n
(11.3)

An inequality constraints gi(x) ≥ 0 is binding at x∗ if gi(x∗) = 0. Otherwise, it is
slack.
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If the m constraints are binding at x∗, NDCQ holds if the matrix:

Dg(x1, . . . , xn) =


∂g1
∂x1

∂g1
∂x2

. . . ∂g1
∂xn...

... . . . ...
∂gm
∂x1

∂gm
∂x2

. . . ∂gm
∂xn


has full rank.

Theorem 11.3.1 (Karush, Kuhn and Tucker). Suppose f, gi are C1 functions and
x∗ ∈ int(E) is a local max for the optimization problem. Suppose one of the following
conditions hold for x∗:

1. All binding constraints functions are affine (linear):

gi(x) =
n∑

i=1

aijxj + bi

2. for all binding constraints, NDCQ is satisfied.

Then there are non-negative λ1, . . . , λn, (each for any constraint), such that the FOCs:

DL(x) = Df(x∗) +
n∑

i=1

λigi(x
∗) = (0, . . . , 0)

And the complementary slackness conditions:

λigi(x
∗) = 0 ∀i = 1, . . . , n

λi, . . . , λn are called Karush-Kuhn-Tucker multipliers.

Proof.

Example 11.3.1. A quick cookbook on how to solve a KKT optimization problem.

max f(x1, . . . , xn)

s.t

gi(x1, . . . , xn) ≥ 0,∀i = 1 . . . , n

These are the main steps to solve this problem.

1. Set up the Lagrangian

2. Check if f, g are C1

3. Check for NDCQ. The Jacobian matrix of constraints must be full rank for all the
binding constraints.
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If there is an interior solution, then λ1, . . . , λn must satisfy:

• FO(N)C for all x1, . . . , xn

• KKT multipliers constraint, namely λ1, . . . , λn ≥ 0

• Complementary Slackness: λigi(x∗) ≥ 0,∀i = 1, . . . , n

• Feasibility Constraints, i.e., the non-negativity of the constraints

This means that if, for instance, there are 2 variables and 3 constraints, there are 11
inequalities to solve.

11.3.1 Envelope Theorem

Let’s write the consumer problem in the following way:

v(p, w) = max
x∈R+

u(x)

s.t
p · x ≤ w

We are interested in the effect of a change of p and w on v(p, w). We assume f and g
are C1 functions in order to apply KKT . Defining (p, w) = θ, we can generalize the
problem as:

v(θ) = max
x∈R+

f(x, θ)

s.t
gi(x, θ) = 0 ∀i = 1, 2, . . . , n

θ ∈ Θ is a family of parameters. For each θ, let x∗(θ) be a global maximum, then:

v(θ) = f(x∗(θ), θ)

Fixing x, f(x, θ) is a function of θ. v(θ), the value function, is the upper enve-
lope of {f(x, θ}. Since x∗(θ) is continuous, then it changes smoothly as θ changes. So,
also v(x∗(θ), θ) also changes smoothly.

Assume x∗ is differentiable, then v is differentiable, and:

dv(θ)

dθ
=
∂f(x∗(θ), θ)

∂θ︸ ︷︷ ︸
direct effect

+
∂f(x∗(θ), θ)

∂x

∂x∗(θ)

∂θ︸ ︷︷ ︸
indirect effect

by the chain rule.
If ∀θ, x(θ) satisfies FOC, so that:

∂f(x∗(θ), θ)

∂x
= 0

Then:
dv(θ)

dθ
=
∂f(x∗(θ), θ)

∂θ
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Theorem 11.3.2 (Envelope Theorem). Suppose θ ∈ int(Θ) and the global max x∗(·)
is characterized by FOCs in a neighborhood of θ. If x∗(·) is differentiable at θ, then:

∂v(θ)

∂θj
=
∂L(x∗, λ, θ)

∂θj
=

f(x∗, θ)

∂θj
+

m∑
i=1

λi
∂gi(x

∗, θ)

∂θj
, ∀j = 1, . . . , n

Proof. Let’s consider the special case of m = 1, n = 2 and θ ∈ R. Let’s take the FOCs
at (x∗(θ), y∗(θ):

∂L

∂x
=
∂f(x∗(θ), y∗(θ), θ

∂x
+ λ

∂g(x∗(θ), y∗(θ), θ

∂x
= 0

∂L

∂y
=
∂f(x∗(θ), y∗(θ), θ

∂y
+ λ

∂g(x∗(θ), y∗(θ), θ

∂y
= 0

The value function is:
v(θ) = f(x∗(θ), y∗(θ), θ)

If the constraint is binding at θ, then:

h(θ) = g(x∗(θ), y∗(θ), θ) = 0

Where h is a composition function. Since h(θ′) = g(x∗(θ′), θ′) ≥ 0, ∀θ′, θ is a local min
of a function h(·) and so h′(θ) = 0.

Differentiating h(θ) with respect to θ yields:

dh(θ)

dθ
=
∂g(x∗(θ), y∗(θ), θ)

∂x

∂x∗(θ)

∂θ
+
g(x∗(θ), y∗(θ), θ

∂y

∂y∗(θ)

∂θ
+
g(x∗(θ), y∗(θ), θ)

∂θ
= 0

Differentiating v(θ) with respect to θ yields:

dv(θ)

dθ
=
∂f(x∗(θ), y∗(θ), θ)

∂x

∂x∗(θ)

∂θ
+
∂f(x∗(θ), y∗(θ), θ)

∂y

∂y∗(θ)

∂θ
+
∂f(x∗(θ), y∗(θ), θ)

∂θ

= −λ
[∂g(x∗(θ), y∗(θ), θ)

∂x
+
∂g(x∗(θ), y∗(θ), θ)

∂y

∂y∗(θ)

∂θ

]
+
∂f(x∗(θ), y∗(θ), θ)

∂θ

= λ
∂g(x∗(θ), y∗(θ), θ

∂θ
+
∂f(x∗(θ), y∗(θ), θ)

∂θ
=

=
∂L(x∗(θ), y∗(θ), θ

∂θ

Notice, finally, that if the constraint is not binding, then λ = 0, and therefore we
have simply:

dv(θ)

θ
=
f(x∗(θ), θ)

∂θ
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Example 11.3.2. Consider the following minimization problem:

c(w) = min
x
w1x1 + w2x2

s.t.

x
1
3
1 x

2
3
2 ≥ y

where w ∈ R2
++.

Set up the Lagrangian:

L(x1, x2, λ) = w1x1 + w2x2 + λ(y − x
1
3
1 x

2
3
2 )

Let’s write down the FOCs:

• ∂ L
∂x1

= w1 − 1
3
x
− 2

3
1 x

1
3
2 = 0

• ∂ L
∂x2

= w2 − 2
3
x

1
3
1 x

− 1
3

2 = 0

Let’s solve the FOCs:
w1

w2

=
1
3
x
− 2

3
1 x

1
3
2

2
3
x

1
3
1 x

− 1
3

2

=
1

2

x1
x2

=

x2 =
2w1x1
w2

Plugging in the constraint function:

x
1
3
1

(2w1x1
w2

) 2
3
= y

and solving for x∗1 and x∗2, we have:

x∗1 = y
(2w1

w2

)− 2
3

x∗2 = y
(2w1

w2

) 1
3

λ∗ = 2−
2
3w

1
3
1 w

2
3
2

Plug in the value function:

v(w) = w1y
(2w1

w2

)− 2
3
+ w2y

(2w1

w2

) 1
3
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Take the partial derivatives with respect to w1, w2, and y. We have:

∂c(w)

∂w1

= y
(2w1

w2

)− 2
3
= x∗1 =

∂ L
∂w1

∂c(w)

∂w2

= y
(2w1

w2

) 1
3
= x∗2 =

∂ L
∂w2

∂c(w)

∂y
= 2−

2
3w

1
3
1 w

2
3
2 = λ =

∂ L
∂y

11.4 Concave Optimization

Theorem 11.4.1. Let E ⊆ Rn be convex and f : E → R be concave. Then:

1. any local maximum of f is a global max of f

2. the set argmax{f(x) : x ∈ E} of maximizers of f on E is convex

Proof. To prove 1), suppose x∗ is a local max but not a global max. Then, there exists
ϵ > 0 s.t.:

f(y) ≤ f(x∗),∀y ∈ Nϵ(x
∗)

But since x∗ is not a global max, it exists a z ∈ E, such that f(z) > f(x∗). Since E is
convex, then we can write λx∗ + (1− λ)z ∈ E for λin(0, 1). If λ ≈ 1. Then, we have:

f(λx∗ + (1− λ)y > λf(x∗) + (1− λ)f(y) > f(x∗)

Which is a contradiction.
If f is concave, and x, y are both maximizers, then also their convex combination is

a maximizer. Indeed:

f(λx+ (1− λ)x′) ≥ λf(x) + (1− λ)f(y) = f(x) ∀λ ∈ (0, 1)

Theorem 11.4.2. Let E ⊆ Rn be convex and f : E → R be strictly concave. Then
argmax{f(x) : x ∈ E} is either empty or a singleton.

Proof.

Theorem 11.4.3. Let f and gi, i = 1, . . . , n be concave. If x∗ satisfies:

1. ∇f(x∗) +
∑n

i=1 λigi(x
∗) = 0

2. λigi(x∗) = 0

3. gi(x∗) ≥ 0 ∀i = 1, . . . , n
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For some multipliers λ1, . . . , λn ≥ 0, then it is a global max.

Proof. Suppose x∗, λ satisfy KKT conditions (FOCs and CS). Let’s define:

h(x) = f(x) +
n∑

i=1

λigi(x)

As a sum of concave functions, h(x) is still concave. By FOCs, ∇h(x∗) = 0, so h is
maximized at x∗. Since λigi(x∗) = 0, then:

h(x∗) = f(x∗) ≥ h(x) = f(x) +
n∑

i=1

λigi(x)

Thus, x∗ is a global max.

11.4.1 Quasi-Concave Programming

Theorem 11.4.4. Suppose f is strictly quasi-concave and Γ is convex. Then:

1. Any local max of f is also a global max

2. The set argmax{f(x) : x ∈ E} is either empty or a singleton

Proof. Let’s see 1). Suppose x∗ is a local max. If x∗ is not a global max, it exists a
z such that f(x∗) < f(z). Define y = λx∗ + (1 − λ)z, since Γ is convex, then y ∈ Γ.
Hence, we can write:

f(λx∗ + (1− λ)z) > min{f(x∗), f(z)}

And then x∗ is not a local max if λ ≈ 1.
To see 2), suppose z ̸= x∗ ∈ argmax f(x). Then, taking λ ∈ (0, 1) and y =

λx∗ + (1− λ)z, we have:
f(y) > min{f(x∗), f(z)}

Which is a contradiction.

Theorem 11.4.5. Suppose gi : E → R, ∀i = 1, . . . ,m is quasi-concave. Then:

Γ =
{
x ∈ E : gi(x) ≥ 0,∀i = 1, . . . ,m

}
is convex.

Proof. Take x, y ∈ Γ. For each λ ∈ [0, 1], λx+ (1− λ)y ∈ E. Since gi is quasi-concave,
then:

gi(λx+ (1− λ)y) ≥ min{gi(x), gi(y)} ≥ 0

So, λx+ (1− λ)y ∈ Γ.
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Theorem 11.4.6. (Arrow and Enthoven) Suppose f and gi be C1 quasi-concave func-
tions mapping E ⊆ Rn → R, where E is open and convex. Define:

Γ =
{
x ∈ E : gi ≥ 0, i = 1, . . . , n

}
Suppose there exists x∗ ∈ Γ and λ ∈ Rk such that the KKT conditions are met.

Df(x∗) +
n∑

i=1

λDgi(x
∗) = 0

λi ≥ 0, ∀i = 1, . . . , n

λigi(x
∗) ≥ 0, ∀i = 1, . . . , n

Then x∗ maximizes f over Γ, provided at least one of the following conditions:

1. Df(x∗) ̸= 0

2. f is concave

Proof.
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Chapter 12

Convexity

In this section, we focus on Convex sets in Euclidean spaces.

Definition 12.0.1. A set X in Rn is convex if it contains a line segment connecting
any two of its elements. I.e., ∀x, y ∈ C, the (λx+ (1− λ)x′) ∈ X.

Definition 12.0.2. A set is called cone if, ∀x ∈ C, there is αx ∈ C, ∀α ≥ 0.

y

x

Figure 12.1: A convex cone

Definition 12.0.3. C is a convex cone if it is a cone, and it is convex. I.e.,∀x, y ∈ C,
αx+ βy ∈ C

Why do we need the definition of a convex cone? Because a cone may be not a
convex set (think of just two lines connected at the origin)

Definition 12.0.4. A conic combination is a linear combination of xi,
n∑

i=1

αixi

where αi ≥ 0.
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Notice that we have a restriction on α, contrary to the linear combination (which
is, therefore, a weaker condition)

Definition 12.0.5. An hyperplane is a set of vectors such that:

H =
{
x ∈ Rn;αTx = b

}
Where α ̸= 0 and b ∈ R.

Definition 12.0.6. A closed half-space is:

H
{
x ∈ Rn;αTx ≤ b

}
In R2, a hyperplane is a line. In constrained optimization, if there is more than one

constraint, we are interested in their intersection.

Definition 12.0.7. A polyhedron is a set:

C =
{
x ∈ Rn : Ax ≤ b

}
A is a matrix, b is a vector.

y

x

Figure 12.2: A polyhedron

Theorem 12.0.1 (Separating Hyperplane Theorem 1). Let C1 and C2 be two convex
sets in Rm, and C1 ∩ C2 = ∅. Then, there exists a ∈ Rn

+ and b ∈ R, such that:

ax ≥ b ∀x ∈ C1

ax ≤ b ∀x ∈ C2

Proof.

Notice that this is a weaker version of the SHT. Indeed, take a point on the boundary
of an open set. Recall that a point is a convex set. In this case, we cannot separate
them.

Furthermore, being a closed convex set, it is not sufficient to guarantee separability.
Under what conditions can we strictly separate convex sets?
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C2

C1

ax = b

ax ≤ b

ax ≥ b

Figure 12.3: Separating Hyperplane Theorem 1

x

y

Figure 12.4: Two closed convex sets that are not separated

Theorem 12.0.2 (Separating Hyperplane Theorem 2). Let C be a closed convex set,
and x0 ̸∈ C. Then there exists a ∈ R \ 0 and b ∈ R, such that:

ax0 > b > ax ∀x ∈ C

How can we describe a convex set C?
A primal description is the list of any element in C.

C = {x : x ∈ C}

A dual description is what is not in C.

C = {x : x ∈ CC}

Let’s focus on the dual description. Suppose we have a Convex set C. We have a
hyperplane, which separates a Convex set. Suppose we find all the hyperplanes that
separate a Convex Set. Can we describe C? The answer is yes.

Theorem 12.0.3. Any closed convex set in Rm is the intersection of the half-spaces
containing it.
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x0

C1

ax = b

Figure 12.5: Separating Hyperplane Theorem 2

Proof. Let’s define H as the intersection of all half-spaces containing C

H =
⋂

=
{
H ′ = C ⊆ H ′

}
We want to show that H = C. That is: H ⊂ C and C ⊂ H. By definition, we know
that C ⊂ H Now, suppose that there exists a x ̸∈ C but x ∈ H. Since x ̸∈ C, by SHT2,
we can find a plane that separates x from C. But x ̸∈ H ′. So, x ̸∈ H. Therefore, we
have reached a contradiction.

C1

Figure 12.6: Any closed convex set as the intersection of all half-spaces containing it

12.1 The Farkas’ Lemma

Using the notion of convex sets and separating hyperplanes, we can prove the Farkas’
Lemma.
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Theorem 12.1.1. (Farkas’ Lemma or Theorem of Alternatives) Let A ∈ Rm×n and
b ∈ Rm. One and only one of the following is true:

1. Ax = b, x ≥ 0 has a solution

2. yTA ≥ 0 and yT b < 0 has a solution

Before proving this lemma, let’s discuss the geometrical intuition behind that. Recall
that a cone can be written as:

C =
{
y : θ1a1 + θ2a2, θ1, θ2 > 0

}
Define y as:

y =
{
Ax = y : x ≥ 0

}
And A = (a1, a2) is a matrix containing two vectors a1, a2. Suppose there is b in the
plane. We have two possibilities:

• b ∈ C

• b /∈ C

Suppose b ∈ C. Then Ax = b, for all x > 0 (by above). Suppose b /∈ C. C is closed
and convex, so we can use the separating hyperplane theorem II. Then, there exists a
hyperplane:

H =
{
x : yTx = α

}
such that:

yT b < α

yTx ≥ α, ∀x ∈ C

More specifically, we can take a hyperplane passing through the origin so that:

yT b < 0

yTx ≥ 0

If x ∈ C, we can express x as a conic combination of ai. So, let’s write:

yTx = yT (a1θ1) + yT (a2θ2).

Choosing (θ1, θ2) = (1, 0), we have:

yTa1 ≥ 0

Choosing (θ1, θ2) = (1, 0), we have yTa2 ≥ 0. Therefore, we have:

yTA ≥ 0
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y

x

H

a1

a2

Figure 12.7: A geometrical representation of the Farkas’ Lemma

Proof. (i) First, we show that (1) and (2) does not hold simultaneously. Suppose
yTA ≥ 0 and x ≥ 0. Then, we have yTAx ≥ 0 (right multiplying by x). Since Ax = b,
we can write yT b ≥ 0. But this contradicts (2).

(ii) We show that at least (1) or (2) must hold. If (1) fails, b is outside the cone. So
we can use the separating hyperplane theorem. Then we have:

yT b < α ≤ yTai︸︷︷︸
∈ C

, ∀y ∈ C

Since, by definition of Cone, 0 ∈ C, we must have:

yT b < α ≤ 0

So yT b < 0. This is (2).
We now must prove yTA ≥ 0. This can be written as:

yTA ≡ yT (a1a2 . . . an) =

yTa1 + yTa2 + · · ·+ yTan ≥ 0

(recall that A is a (m × n) matrix, y is a (n × 1) vector, and yT is a (1 ×m) vector.
Then yTA is a (1× n) vector). By contradiction, suppose yTA ̸≥ 0. Hence, there must
exist a yTak < 0. Without loss of generality, we can assume yTa1 < 0, and we can
write:

yTA (x1, 0, 0, . . . , 0)︸ ︷︷ ︸
β

yTa1x1 ≤ 0. Then:
yTa1β < 0
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and
yTa1β < α

This contradicts the SHT2. Hence:

yT b < α ≤ yTx,∀x ∈ C ⇒ yTA ≥ 0.

To conclude, a recap of some concepts seen previously can be helpful.

Definition 12.1.1. The subgraph (or hypograph) of f is:

subf = {(x, y) ∈ Rn × R : f(x) ≥ y}

The supergraph (or epigraph) of f is:

supf = {(x, y) ∈ Rn × R : f(x) ≤ y}

Recall a function f is concave if and only if the subgraph is convex. Similarly, f is
convex if and only if the supergraph is convex.

Finally, we see the concept of hemi-continuity.

Definition 12.1.2. We say that a function f : R → R is upper-hemi continuous at
x0 if limx→x0 supf(x) ≤ f(x0)

We say that a function f : R → R is lower-hemi continuous at x0 if limx→x0 supf(x) ≥
f(x0)

Theorem 12.1.2. A function f is upper hemi-continuous if and only if its subgraph is
closed.

A function f is lower hemi-continuous if and only if its supergraph is closed.

Proof.
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Chapter 13

Linear Programming

Let’s consider the following problem:

Vp(b) = max cTx

s.t.

Ax ≤ b, x ≥ 0

where A is a (m× n) matrix, x is (n× 1) vector, and b is (n× 1).
This is called the primal problem. This form is called canonical form. The

objective function is cTx, The constraint set is:

C =
{
x : Ax ≥ b, a, x ≥ 0

}
A solution is any x ∈ Rn. A feasible solution is any x ∈ C. The optimal solution is any
x∗ that solves the problem.

Another form of writing this problem is:

Vp(b
′) = max c′x

s.t

A′x = b, x′ ≥ 0

This is called the standard form.
We can express a standard form using a canonical form. Indeed:

A′x ≥ b and A′x ≤ b

Combining these two inequalities, we have:

Ax ≥ b and Ax′ ≤ b

We can write: {
−Ax ≤ −b
Ax ≤ b
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In matrix form: [
A
−A

]
x ≤

[
b
−b

]
We can also express a canonical form as a standard form, which means passing from
inequality to equality. This can be done by using slack variables. Then:

Ax ≤ b⇒ b− Ax ≥ 0

So, we can write A(x+ z) = b, x, z > 0. Therefore:

max cTx

s.t.

(A|I) ·



x1
...
xn
z1
...
zn


= b

Example 13.0.1.
maxx1 + x2

s.t
x1 + 2x2 ≤ 6

x1 − x2 ≤ 3

x1, x2 ≥ 0

This problem can be written, in canonical form as:

max
[
1 1

]
·
[
x1
x2

]
s.t.[

1 2
1 −1

] [
x1
x2

]
≤

[
6
3

]
The problem in standard form is:

max
[
1 1

]
·
[
x1
x2

]
s.t[

1 2 1 0
1 −1 0 1

]
x1
x2
z1
z2

 ≤
[
6
3

]

A graphical representation is given in Figure 8.
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x2

x1

x∗ = (4, 1)

Figure 13.1: The geometrical representation

The problem of finding optimal points can be extremely simplified by looking only at
the intersections between the linear constraints. These are the vertices of the polyhedron
formed by the linear constraints.

Definition 13.0.1. x is a vertex of polyhedron C if there is no exists y ̸= 0 such that
x+ y and x− y are both in C.

Theorem 13.0.1. (Vertex Theorem) For any Linear Programming in standard form
(only) with feasible solutions, we have:

1. A vertex exists

2. If the problem is bounded, Vp(b) < ∞, and x ∈ C, (the constrained set) then it
exists a vertex x′ such that c · x′ ≥ c · x

Before seeing the proof, let’s discuss the intuition.
Take x ∈ C. If it is a vertex, we are done. If it is not, then x+ y and x− y belong

to C. Each of these two points can be "stretched", i.e., scalar multiplied by a scalar λ
up to reach the boundary. If it is a vertex, we are done. If it is on the boundary but
not a vertex, we can do the same until we reach a vertex.

Let’s see the proof now.

Proof. Let’s first prove the existence. Choose x ∈ C. If x is a vertex, we are done. If
it is not a vertex, then, by definition, for some y ̸= 0, we have x± y ∈ C.
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x
x− y

x+ y
λλ(x+ y)

Therefore, Ay = 0, since:
Ax = b

A(x+ y) = 0

Further, if xj = 0, then yj = 0. Recall that C = {x : Ax = b,x ≥ 0}. Then, if
x± y ∈ C, x± y ≥ 0. If xj = 0, but yj ̸= 0, then we have xj − yj < 0, and x− y ≱ 0.
This also implies that x± λy has fewer 0’s than x.1

Let λ∗ solve sup{λ : x ± λ∗y ∈ C}. Since x is not a vertex, λ∗ ̸= 0. And since C
is closed, x ± λ∗y ∈ C (that is, the boundary is also in C). If x ± λ∗y is a vertex, we
stop. Otherwise, we repeat the process. A vertex has more zeros than a point in the
boundary. This assures that, at a certain point, the process will stop.

Let’s see optimality now. We want to prove that c · x < c · x′, where x′ is a vertex.
If x is not a vertex, then x± y ∈ C. We have, then cx + cy. As before, we scalar
multiply by λ > 0 until we reach the boundary. Then, c(x+ λy) = cx+ cλy ≥ cx.

Notice that it cannot be the case that yi ≥ 0 for all j. Indeed, if so, by construction,
we have c · y > 0 and x + λy ∈ C, ∀λ ≥ 0. But then c(x + λy) → ∞ as λ → ∞, thus
violating the assumption that of boundedness of Vp(b). Therefore yj < 0 for some j.
For large λ, x+λy ≱ 0. Let λ∗ denote the maxλ. Then we know x+λ∗y ∈ C and has
at least one more zero. Then:

c(x+ λ∗y) ≥ cx

Repeat the process until we reach a vertex. In each process, the value function strictly
increases, so at a certain point, we reach a vertex.

The first statement provides the existence of a vertex. The second statement estab-
lishes the optimality of a vertex. Notice that this implies that the number of vertex is
finite because we are in Rm. Notice that a vertex may be not the only optimal solution.
The theorem states that a vertex is part of the set of solutions.

A vertex may not exist in canonical form.
1Another way of seeing it is that a point in the constraint set has fewer zeros than a point on

the boundary. Think of the unit simplex in R3. Each point on the boundary can be written as
(x1, x2, 0), (x1, 0, x3), (0, x2, x3)).

91



13.1 Duality

We introduce the notion of basic solution. Notice that this holds only for LP in
standard form.

Definition 13.1.1. A feasible solution to LP in standard form is basic if and only if
the columns aj of A such that xj > 0 are linearly independent.

This means that if we take a submatrix of A, say AX , consisting of columns aj for
each xj > 0 has full column rank.

Example 13.1.1. Let’s see the following example:

x1 + x2 + x3 = 1

2x1 + 3x2 = 1

with x ≥ 0. Let’s write the matrix of the coefficient constraints.

A =

[
1 1 1
2 3 0

]
This matrix has three bases.

• B1 =

[
1 1
2 0

]
(notice that this matrix is made up by columns a1 and a3). Then,

the solution is given by the system:{
x1 + x3 = 1

2x1 = 1
⇒

{
x1 = 1− x3

2(1− x3) = 1
⇒

{
x1 = 1− x3

2− 2x3 = 1
⇒

{
x1 = 1− x3

x3 =
1
2

Then x1 = (1
2
, 0, 1

2
). This is a basic solution.

• B2 =

[
1 1
2 3

]
Since x2 = −1, there is no basic solution for this submatrix.

• B3 =

[
1 1
3 0

]
x3 = (0, 1

3
, 2
3
) is a basic solution.

Once one finds the basic solutions, she can ask how these are connected with vertices.
A theorem which connects basic solutions and vertices is the following.

Theorem 13.1.1. A solution is basic if and only if it is a vertex

Proof. Let’s see (⇒). Suppose x̂ is not a vertex. Then we want to show it is not a basic
solution. Since x̂ is not a vertex, it exists a y ̸= 0 such that x± y ∈ C (the constraint
set), and if xj ̸= 0, then yi ̸= 0 (see above). This implies Ay is a linear combination of
columns of the submatrix AX because y only takes positive values in AX . By definition,
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Ay = 0, so the columns of AX must be linearly dependent. So x̂ is a basic solution. We
have reached a contradiction.

(⇐) Suppose x̂ is not basic. We want to show it is not a vertex. If x̂ is not a basic
solution, then the submatrix AX must be linearly dependent, and so, there is a ŷ such
that AX ŷ = 0. Let y that takes value 0 outside the columns in AX be equal to ŷ for the
columns of AX . Then Ay = 0, xj = 0 and yj = 0. This implies x̂± y ∈ C. therefore, x̂
is not a vertex.

Theorem 13.1.2. (The Fundamental Theorem of Linear Programming) If an LP in a
standard form has a feasible solution, then it has a basic feasible solution.

If it has an optimal solution, then it has a basic optimal solution.

Proof. If x is a feasible solution, then, by the Vertex theorem, a vertex exists, and it is
a solution. From the theorem above, a vertex is a basic solution.

This means that, graphically, if the LP problem has a solution, we only need to check
for basic solutions, i.e., vertices. However, two important caveats must be recalled:

1. The problem must be bounded

2. We are in standard form

However, the following proposition (without proof) links feasible solutions in stan-
dard forms and feasible solutions in canonical form.

Proposition 15. The feasible solution x to a canonical problem is a vertex if and only
if there exists some slack variable z such that (x, z) is a vertex for the corresponding
standard form.

Before going on, let’s see visually what it means to pass from standard form to
canonical form.

A constraint set of a problem in standard form is given by the following figure.
This can be written as:

C3 =
{
(x, y, z) : x+ y + z = 1, x, y, z ≥ 0

}
⊂ R3

+

However, in canonical form, we have one variable less (no slack variables). So,
C ⊂ R2

+

Now, we can see more in detail the dual problem. Recall that the primal of an LP
problem in the canonical form is:

Vp(b) = max cTx

s.t.

Ax ≤ b, x ≥ 0
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x

y

z

Figure 13.2: A C of LP in standard form

The dual is:
Vd(c) = min yT b

s.t.

ATy ≥ c, y ≥ 0

Example 13.1.2. Let’s see the following example:

Vp(b) = max x1 + x2

s.t
x1 + 2x2 ≤ 6

x1 − x2 ≤ 3

x1, x2 ≥ 0

In the matrix from this becomes:

max
[
1 1

]
·
[
x1
x2

]
s.t.[

1 2
1 −1

] [
x1
x2

]
≤

[
6
3

]
From the above, we know that the optimal solution is (4, 1).

Let’s write down the dual now:

Vd(c) = min 6y1 + 3y2
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y

x

Figure 13.3: A C of LP in canonical form

s.t.
y1 + y2 ≥ 1

2y1 − y2 ≥ 3

y1, y2 ≥ 0

In matrix form, this is equal to:

min
[
6 3

]
·
[
y1
y2

]
s.t.[

1 1
2 −1

] [
y1
y2

]
≥

[
1
1

]
Solving this system, y∗ = (2

3
, 1
3
).

Plugging x∗ in Vp(d) we obtain:

Vp(b) = 4 + 1 = 5

Plugging y∗ in Vd(c) we obtain:

Vd(c) =
2

3
6 + 3

1

3
= 4 + 1 = 5

Then:
Vp(b) = Vd(c)

What if the primal problem is written in standard form? Recall that we can pass
from a standard form into a canonical form rewriting the constraints Ax = b as:

Ax ≤ b
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−Ax ≤ −b

Therefore the problem in canonical form is:

Vp(b) = max cTx

s.t.[
A
−A

]x1...
xn

 ≤
[
b
−b

]
The dual problem is then:

Vd(c) = min yT
[
b
−b

]
subject to

yT
[
A −A

]
≥ cT

In the dual problem in standard form, the non-negativity constraint of y can be
waived.

What if the primal has both inequalities and equalities? Assume the following
primal problem:

Vp(b, b
′) = max cTx

subject to

Ax ≤ b

Ax′ = b′

x ≥ 0

We can pass from canonical to standard forms. So we can write the constraints of the
problem above as:  A

A′

−A′

x ≤

 b
b′

−b′


Then, the dual is:

min
[
yT zT1 zT2

]  b
b′

−b′


subject to

[
yT zT1 zT2

]  A
A′

−A′

 ≥ cT

yT , zTi ≥ 0
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Taking z = z1 − z2, we can write:
yT b+ zT b

subject to

yTA+ zTA ≥ cT

However, it is not always the case that the values of the primal and the dual are the
same. See the following example.

maxx1 + x2

subject to

−2x1 − x2 ≤ 1

−x1 − 2x2 ≤ 1

The dual is:
min y1 + y2

subject to

−2y1 − y2 ≥ 1

−y1 − 2y2 ≥ 1

yi ≥ 0

In this case, the dual problem is infeasible since there is no y ∈ C. In some cases, it
can be that both are infeasible.

Example 13.1.3. See the following example:

Vp(b) = max x1 + x2

subject to[
1 −1
−1 1

] [
x1
x2

]
≤

[
0
1

]
This gives the following unbounded constrained set:

Is it possible that both the problems are unbounded? Recall that unbounded means
that Vp(b), Vd(c) may be equal to ±∞. If x∗ ∈ C is feasible, then Vp(b) = ∞ is not
possible. The only possibility for both being unbounded is if Vd = −∞, Vp = ∞. But
these cases are not possible.

An important result is contained in the following theorem.

Theorem 13.1.3 (Weak Duality). Vp(b) ≤ Vd(c) if both are feasible.
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x2

x1

Figure 13.4: A problem with no solution

Proof. Let x, y be feasible solutions of the primal and the dual problem (namely x ∈ CP ,
y ∈ CD). Since y ∈ CD, then yTA ≥ cT . Similarly, since x ∈ CP , then x ≥ 0. Then we
have (yTA− cT )x ≥ 0 and yTA ≥ cTx.

Following the same logic as above, since x ∈ CP , then Ax ≤ b and, since y ∈ CD,
then y ≥ 0. So yTAx ≤ yT b. Combining these two results, we have:

cTx ≤ yTAx ≤ yT b ∀x, y ∈ C

And then Vp ≤ Vd.

According to this result, it is not possible for both Vp and Vd to be unbounded. So
we can have only three possibilities:

1. Vp is unbounded and Vd is unfeasible

2. Vd is unbounded and Vp is unfeasible

3. Both are feasible and bounded

Then, we can write down the following result.

Theorem 13.1.4 (Strong Duality). For primal and dual problems, exactly one of the
following three alternatives must hold:

1. Both are feasible, and both have optimal solutions, with Vp = Vd

2. One is unbounded, the other is unfeasible

3. Both are unfeasible
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Proof. We want to show that Vp = Vd. Let’s express the primal problem using the
standard form. Then we can write:

Vp(b) = max c · x

subject to

Ax = b

x ≥ 0

Consider the following system of inequalities:[
A
C

]
x =

[
b

Vp + ϵ

]
(13.1)

With x ≥ 0 (notice that this is another way of saying that exists an x such that the
primal problem has a solution). Suppose Vp has a solution. If ϵ = 0, this constraint
must have a feasible solution (Ax = b is the constrained set of the standard form, if x is
feasible, a solution exists). If ϵ > 0, you cannot find an optimal solution that achieves

the max value. If 4) has not a solution, x is outside the cone spanned by
[
A
c

]
. By

Farkas’ Lemma, if ϵ > 0, the following must have a solution:[
yT α

]
·
[
A
c

]
≥ 0 (13.2)

[
yT α

]
·
[

b
Vp + ϵ

]
< 0 (13.3)

If α = 0, if y is feasible to 5) and 6), and ϵ > 0, it must be feasible also when ϵ = 0.
But this is not possible because, by Farkas’ Lemma, if 4) has a solution, then 5) and 6)
don’t have.

If α > 0, if y satisfies 4) and 5), when ϵ > 0, it must satisfy them also when ϵ = 0.
And this is not possible.

Then α < 0 is the only possibility. Without loss of generality, we can put α = −1.
Then, from 4), we have yTA ≥ cT , y ∈ Cd. From 5) we have yT b < Vp + ϵ. In other
words, we find a feasible solution for the dual problem, such that y?yT b < Vp + ϵ and
Vd < Vp + ϵ. From the weak duality theorem, Vd is bounded from below by Vp. So,
Vp ≤ Vd < Vp + ϵ. Since ϵ can be made arbitrarily small, we have Vp = Vd. This
completes the proof.

Notice, however, that the duality theorem does not provide a solution to a linear
optimization problem but only establishes a way to find it. Then, we need the following
result.

Theorem 13.1.5 (Complementary Slackness). Suppose x∗ and y∗ are feasible solutions
for primal and dual problems, respectively. Then, they are optimal solutions if and only
if the following holds:
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1. For each constraint i in the primal problem

y∗i (bi − Aix
∗) = 0

(ith coordinate unknown times ith constraint.

2. For each yj in the dual problem

(y∗
T

Aj − cj)x
∗
j = 0

Proof. To see 1), suppose x∗ and y∗ are feasible and satisfy the complementary slackness
condition. Then:

y∗
T

b = y∗
T

Ax∗︸ ︷︷ ︸
from 1)

= cTx∗

So y∗ and x∗ are optimal solutions if Vp = Vd.
To see 2), if x∗ and y∗ are optimal, they must be feasible. Ax∗ ≤ b, y∗ ≥ 0 imply

y∗
T
Ax∗ ≤ y∗

T
b. Similarly, cTx+ ≤ y∗TAx∗ imply:

y∗
T

b = y∗
T

Ax∗ = cTx∗

Where y∗T b = y∗TAx∗ derives from 1), and y∗TAx∗ = cTx∗ from 2). Then, complemen-
tary slackness holds.

In a nutshell, what the 2 conditions of complementary slackness say, is that:

• If Aix
∗ = 0, then bi = 0 and y∗i ≥ 0

• If Ajy
∗ = 0, then cj = 0 and x∗j ≥ 0

Notice that complementary slackness is a necessary and sufficient condition for optimal
solutions.

Example 13.1.4. Let’s see a numerical example:

Vp(b) = max x1 − x2

s.t.

−2x1 + x2 ≤ 2

x1 − 2x2 ≤ 2

x1 + x2 ≤ 5

x1, x2 ≥ 0

The dual problem is:
Vd(c) = min 2y1 + 2y2 + 5y3

s.t
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x2

x1

−2x1 + x2 = 2

x1 + x2 = 5

x1 − 2x2 = 2

x∗ = (4, 1)

Figure 13.5: Geometrical solution

−2y1 + y2 + y3 ≥ 1

y1 − 2y2 + y3 ≥ −1

y1, y2, y3 ≥ 0

See the figure for a graphical representation of this problem. The optimal solution is
x∗ = (4, 1). Then Vp(b) = 3. Plugging into the constraints, we have:

−2(4) + 1 < 2

(4)− 2(1) = 2

(4) + (1) = 5

Then, we have one slack constraint and two binding constraints. Since the first con-
straint is slack, this means that y1 is equal to 0 by Complementary Slackness. So, we
need only to find y2 and y3. Applying Complementary Slackness, we have:

x∗1(−2y∗1 + y∗2 + y∗3 − 1) = 0

x∗2(y
∗
1 − 2y∗2 + y∗3 + 1) = 0

Since x∗1, x∗2>0, this means that:

−2y∗1 + y∗2 + y∗3 − 1 = 0

y∗1 − 2y∗2 + y∗3 + 1 = 0

But the first constraint is slack, so y∗1 = 0. Then:

y∗2 + y∗3 = 1
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−2y∗2 + y3 = −1

Solving the system, we have:{
y∗2 + y∗3 = 1

−2y∗2 + y3 = −1
⇒ y∗2 =

2

3
, y∗3 =

1

3

Then, the optimal solution of the dual is (y∗1, y
∗
2, y

∗
3) = (0, 2

3
, 1
3
) and Vd(c) = 3 = Vp(b)
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Chapter 14

Non-Linear Programming

In this section, we explore the topic of Non-linear programming. Most results have
already been established in the previous section about optimization. However, now
they will be treated in connection with some results from Linear programming.

The main difference with the results in the previous chapters is that it is not assumed
linearity anymore. The objective function is non-linear, and the constraints are too (but
these can also be linear as well).

A non-linear optimization problem is:

max f(x)

s.t.

gi(x) ≥ 0 i ∈M = 1, . . . ,m

Where f, g : Rn → R, continuous and differentiable. Recall that a ϵ−neighborhood
is the set of point enough close to x, that is:

Nϵ(x) =
{
y : |x− y| < ϵ

}
Further, we can define the feasible set as the set of values for x which satisfies the

constraints:
F =

{
x ∈ Rn : gi(x) ≥ 0, ; ∀i ∈M

}
Recall that x is a local max for a linear programming problem if it exists ϵ > 0

such that f(x) > g(y) for all y ∈ Nϵ(x). x is a global max if it is an optimal solution
for the problem.

The simplest case is that of unconstrained optimization, namely when M = ∅.
Therefore, we have the following result.

Theorem 14.0.1 (First Order Conditions). If x∗ is a local max, then:

∇f(x∗) = 0

where ∇f =
[
f ′
1 f ′

2 . . . f ′
n

]
is the gradient of f(·).

103



Proof. Suppose h = ∇f(x∗) ̸= 0. Then:

hTh = hT∇f(x∗) > 0

Therefore, we can write f(x∗ + εh) ≈ f(x∗) + εhT∇f(x∗), where:

εhT∇f(x∗) > 0

Where ε is small, then:
f(x∗ + εh) > f(x∗)

thus contradicting x∗ being an optimal point.

The intuition is that the derivative is the slope of the function so that it reaches its
maximum or minimum when the slope is equal to 0. Since this is a necessary condition
for local max, it is a necessary condition also for global max. However, it is not a
sufficient condition. That is, the derivative can be equal to 0, still the point not be a
max or min. The standard example is the function y = x3.

Further, this result does not say anything about the optimal point being a max
or min. We need to impose further restrictions on the sign of the second derivatives.
These are the Second Order Conditions:

• f ′′(x∗) < 0 is a max.

• f ′′(x∗) > 0 is a min.

The intuition is that in the ϵ−neighborhood of x∗, if x∗ is a max, then f ′(x∗) < 0,
and therefore f ′′(x∗) (for x∗ being a min, the sign is reversed). Let’s see the formal
statement.

Theorem 14.0.2 (Second Order Conditions). Suppose f is C2 on R. Then:

1. if f has a local max in x∗, ∇2f(x∗) is negative semidefinite1

2. if f has a local min in x∗, ∇2f(x∗) is positive semidefinite

These are the necessary conditions. The sufficient conditions are:

1. If ∇f(x∗) = 0 and ∇2f(x∗) is negative definite, then x∗ is a strictly local max

2. If ∇f(x∗) = 0 and ∇2f(x∗) is positive definite, then x∗ is a strictly local min
1Recall that there are many definitions for negative/positive definitiness/semi-definiteness. One is

Definition 14.0.1. Let A be a n× n symmetric matrix, and Ak denote the k × k submatrix. Then:

• A is positive definite if and only if (−1)k|Ak > 0|, for all k

• A is negative definite if and only if (−1)k|Ak| < 0, for all k.

The definition for semidefiniteness is more involute. See p.62 of these notes)
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Proof. Let’s see only the necessary and sufficient conditions for local max (the argument
for local min is specular).

Suppose x∗ is a local max, we want to show that ∇2f(x∗) is negative semi-definite.
We can write (using Taylor expansion):

f(x∗ + εh) ≈ f(x∗) + εhT∇f(x∗) + 1

2
ε2hT∇2f(x∗)h+O(εT )

Since εhT∇f(x∗) = 0, and rearranging, we have:

f(x∗ + εh)− f(x∗) ≈ 1

2
ε2hT∇2f(x∗)h

Since ε2

2
> 0, then:

hT∇2f(x∗)h ≤ 0

∇2f(x∗) is a Negative Semidefinite Matrix.
Let’s see the case for strict local max. Suppose ∇f(x∗) = 0, and ∇2f(x∗) is negative

definitive. We want to show that x∗ is a local max. We can write;

f(x)− f(x∗) = ∇f(x∗)(x− x∗) +
1

2
(x− x∗)T∇2f(x∗ +O(x− x∗))(x− x∗)

where x is enough close to x∗. Since ∇f(x∗) = 0, we can look at the second term.
Because of continuity, we can find x sufficiently close to x∗ such that this term is less
than 0. This completes the proof.

The FOCs are necessary conditions for local max but not sufficient. The Second
Order Conditions are sufficient, but only for local max. For global max, we need a
further result.

Theorem 14.0.3. (Sufficient Conditions for Global Max) Let f be a concave, con-
tinuous and differentiable function of an open convex set C. Then f has a max at
x∗ if and only if we have the FOCs, i.e., ∇f(x∗) = 0.

Proof. Notice that this theorem states an if and only if condition. Then, (⇒) is trivial
since a Global Max is also a Local Max.

Let’s see (⇐). By contrapositive, we want to show that if y is not a global max,
then ∇f(y) ̸= 0. y is not a global max, thus we can find x ̸= y such that f(x) > f(y).
Since f(·) is concave:

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y)

Rearranging, we have:

f(y + λ(x− y))− f(y) ≥ λ(f(x)− f(y))

Let h = x+ y, and θ = f(x)− f(y) > 0 then:

f(y + h)− f(y) ≥ λθ

For sufficiently small λ, we have hT∇f(y) ≥ θ > 0. So hT∇f(y) is strictly positive and
∇f(y) ̸= 0.
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So far, we have recapped the main results from the simplest case of Non-linear
optimization, the unconstrained case. Let’s now see the more general case, where there
are one or more constraints.

14.1 Constrained Optimization

A general version of this problem is the following:

max
x∈Rn

f(x) (14.1)

s.t.

gi(x) ≥ 0 i ∈M = 1, . . . ,m

We want to show that if x∗ is a local max, then it satisfies the FOCs. Therefore, in this
section, I will provide several results and variants of the original, powerful, Karush-
Kuhn-Tucker Theorem.

To begin with, let’s state that if x∗ solves the problem (7), then, we can express the
constraint g(x∗) as a linear approximation:

g(x∗ + εg) ≈ g(x∗) + εhT∇g(x∗)

Therefore, we can rewrite the problem as follows.

max
h

f(x∗) + εhT∇f(x∗)

s.t.

gi(x
∗) + εhT∇gi(x∗) ≥ 0 ß ∈M

If x∗ is a local max, then h∗ must be zero. Since we have linearized both the value
function and the constraints, we can rewrite this problem as a Linear Programming
problem.

Vp(b) = max
h

[
ε ∂f
∂x1

. . . ε ∂f
∂xn

]h1...
hn

 (14.2)

s.t.−ε
∂g1
∂x1

· · · −ε ∂g1
∂xn... · · · ...

−ε∂gn
∂x1

· · · −ε ∂gn
∂xn


h1...
hn

 ≤

g1...
gn


Then, the dual is:

Vd(c) = min
µ

[
µ1 . . . µn

] g1...
gn

 (14.3)
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s.t.−ε
∂g1
∂x1

· · · −ε∂gn
∂x1... · · · ...

−ε ∂g1
∂xn

· · · −ε ∂gn
∂xn


µ1

...
µn

 = 2

ε
∂f
∂x1...
ε ∂f
∂xn


The value of the primal problem is 0, since the value of the dual problem is 0 by
complementary slackness. Then:

n∑
i=1

hiε
∂f

∂xi
= 0

Because:
µigi(x

∗) = 0

Since hi ≥ 0 and ∂f
∂xi

≥ 0, then the sum of any non-negative terms is equal to 0 if and
only if each term is equal to 0.

The following result formally establishes what we have stated.

Lemma 14.1.1 (Fritz John Conditions). Let’s have a constrained optimization problem
where x∗ is a local max. Then, there exist non-negative multipliers {µ0, µ1, . . . , µn} not
all zeros, such that:

µ0∇f(x∗) +
n∑

i=1

µi∇gi(x∗) = 0

and
µif(x

∗) = 0 ∀i ∈M

where µ0 can be zero or not.

Notice that we can normalize the multipliers as follows:

µ0∑n
i=1 µi

∇f(x∗) + . . .
µn∑n
i=1 µi

∇gm(x∗) = 0

In other words, we can say that 0 belongs to the Convex Hull3 spanned by the
conditions of the Lemma above.

Proof. Suppose the first r > 0 constraints bind. Then, for i > r and µi = 0, Comple-
mentary Slackness holds. We want to show that:

µ0∑n
i=1 µi

∇f(x∗) + µr∑n
i=1 µi

∇gm(x∗) = 0

and:
0 ∈ Conv

{
∇f(x∗), . . . ,∇gm(x∗))

}
2Since the primal does not have non-negativity constraints, the dual has the equal sign
3Given a set X = (a, b), the Convex Hull is the smallest convex set containing (a, b)

107



Suppose not. Then, by the Separating Hyperplane Theorem, we can find a vector h ∈
Rn such that h · y > 0,∀y ∈ Conv

{
∇f(x∗), . . . ,∇gm(x∗))

}
if and only if h∇gi(x∗) > 0,

for all i ∈ {i, . . . , r}. Recall that:

gi(x
∗ + εh)− gi(x

∗) = εh∇gi(x∗) +O(ε)

and for small enough ε, we have:

gi(x
∗ + εh) > gi(x

∗)∀i ∈ {0, 1, . . . , r}

and for i > r, we have:

gi(x
∗ + ϵh) ≈ gi(x

∗) + εhT∇gi(x∗) ≥ 0

Therefore, x∗ + εh is feasible. Then:

f(x∗ + εh) > f(x∗)

implies that x∗ is not a local max. Then we have reached a contradiction.

We can see the following example.

Example 14.1.1.
max
x,y

x2 − y2

s.t.

g(x, y) = (x− 1)3 − y2

The optimal solution is (x∗, y∗) = (1, 0). The gradients are:

∇f(x∗) =
[
−2x
−2y

]
=

[
−2
0

]
∇g(x∗) =

[
3(x− 1)2

−2y

]
=

[
0
0

]
By the Fritz John Conditions:

µ0

[
−2
0

]
+ µ1

[
0
0

]
= 0

This is true if and only if µ0 = 0.

Therefore, according to these conditions, we can have two situations, where µ0 = 0
and where µ0 ̸= 0. We can generalize this by imposing some constraint qualifications,
namely that ∇gi(x∗), for all i ∈M must be linearly independent.

This is the first of several results, which will be presented in the next pages, and
that represent the necessary conditions for solving constrained optimization problems.
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14.2 Constrained Optimization: necessary conditions

Theorem 14.2.1. (Karush-Kuhn-Tucker Theorem I) Suppose M ̸= ∅, x∗ is a local
maximum for an optimization problem. If {∇gi(x∗)} are linearly independent (con-
straint qualification), then we can find non-zero multipliers {λi}i∈M such that:

1. First Order Conditions

∇f(x∗) +
M∑
i=1

λigi(x
∗) = 0

2. and Complementary Slackness

λigi(x
∗) = 0; ∀i ∈M

Are satisfied.

A more general problem can expressed with inequality and equality constraints as
follows:

max
x

f(x)

s.t.
gi(x) ≥ 0; ∀i ∈M

gj(x) = 0 ∀j ∈ N

Where f, gi, gj : Rn → R. In this example, we have two sets of constraints. Then we
have the following definition.

Definition 14.2.1. gi(x) ≥ 0 is effective of x∗ if the constraints bind, i.e. gi(x∗) = 0.
We define M e as the set of effective constraints.

Thus, we have the following result.

Theorem 14.2.2 (Karush-Kuhn-Tucker II). Let x∗ be a local max for an optimization
problem. If {∇gi(x∗) : i ∈ M e ∪ N} are linearly independent, then it exists a
multiplier {λi} such that:

∇f(x∗) +
∑

i∈M∪N

λi∇gi(x∗) = 0 (14.4)

λigi(x
∗) = 0

∀i ∈M,λi ≥ 0, gi(x
∗) ≥ 0

(14.5)

λigi(x
∗) = 0

∀i ∈ N, λi is unrestricted
(14.6)
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We have unrestricted λi for equality constraints because of the representation as a
primal/dual problem seen before. Then, when we have x unrestricted in the primal, we
need equality in the dual.

Another version of the KKT theorem, with linear constraints, is the following.

Theorem 14.2.3 (Karush-Kuhn-Tucker Theorem (Linear)). Let x∗ be a local max for
the following problem:

max
x

f(x)

s.t.

Ax ≥ b

Where A is a (m× n), b is (n× 1) and f is continuously differentiable.
Then it exists a non-zero λ ∈ Rm

+ such that:

1. First Order-Conditions
∇f(x∗) + ATλ = 0

2. and Complementary Slackness
λiAx

∗ = 0

are satisfied.

Proof. We can express the constraint in matrix form:

gi(x) =
n∑

i=1

aijxj − bi

Then:
∂gi(x)

∂xj
= aij

and:
∇f(x) =

[
∇g1(x) . . . ∇gn(x)

]
and:

AT =

a11 . . . am1
...

...
...

a1n . . . amn


We want to show that ∇f(x∗)+

∑n
i=1 λi∇gi(x∗) = 0. Suppose that the first r constraints

bind. We want to show that exists a λ ∈ R+ such that:

∇f(x∗) +
n∑

i=1

λi∇gi(x∗) = 0

In other words, that −∇f(x∗) is in the Cone spanned by [∇g1(x), . . . ,∇gm(x∗)]. Sup-
pose not, then, by Farkas’ Lemma, there is some vector h ∈ Rn such that:
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• hT∇gi(x∗) ≥ 0, for all i ∈ {1, · · · , r}

• hT∇f(x∗) > 0

Consider x∗ + εh, then:

• x∗ + εh leads to an higher value

f(x∗ + εh) = f(x∗) + εhT∇f(x∗)︸ ︷︷ ︸
> 0

which implies:
f(x∗ + εh) > f(x∗)

• Further, we want to show that x∗ + εh is feasible when ε is small. That is:

A(x∗ + εh) ≥ b

Implies:
n∑

i=1

aijx
∗ + ε∇gi(x∗)h ≥ b

Then we have two cases: (i) i = r:

L∑
i=1

aijx
∗
j = bi

Since we also have ∇gi(x∗)h ≥ 0, the ith constraint holds; (ii) i >:
n∑

i=1

aijx
∗
j > bi

So the ith constraint holds if ε is small. But this contradicts the fact that x∗ is a
local max.

The following theorem establishes other necessary conditions when the constraints
are concave functions.

Theorem 14.2.4 (Karush-Kuhn-Tucker-Slater). Let x∗ be a local max for the problem:

max
x

f(x)

s.t.

gi(x) ≥ 0 ∀i ∈M

All gi(x) are concave functions for i ∈ M , and f, gi are continuously differentiable.
Suppose that there exist a xo ∈ Rn such that gi(xo) > 0, for all i ∈ M . Then, there
exist multipliers λi ≥ 0 such that:

111



1. First Order Conditions

∇f(x∗) +
M∑
i=1

λi∇gi(x∗) = 0

2. and Complementary Slackness

λigi(x
∗) = 0; ∀i ∈M

Are satisfied.

Proof. Recall, from Fritz John Conditions, that:

λ0∇f(x∗) +
n∑

i=1

λi∇gi = 0

We want to show that λ0 > 0. Suppose not. Then:

n∑
i=1

λi∇gi(x∗) = 0

Since gi(·) is concave, then:

gi(x
∗) +∇gi(x∗)(xo − x∗) > gi(x

∗)

This can be written as:
n∑

i=1

λigi(x
∗)︸ ︷︷ ︸

= 0 by CS

+
n∑

i=1

λi∇gi(x∗)︸ ︷︷ ︸
= 0 by CS

(xo − x∗) ≥
n∑

i=1

λigi(x
o) > 0

Therefore 0 > 0, we have reached a contradiction.

Here is a recap of the necessary conditions for local max. If x∗ is a local max,
then we can use the Fritz John Conditions when λ0 ̸= 0. Otherwise, we need one of the
following constraints qualifications:

1. All gradients must be linear independent

2. The constraints must be linear

3. The constraints must be concave, and therefore we have interior points.
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14.3 Constrained Optimization: sufficient conditions

Theorem 14.3.1 (Karush-Kuhn-Tucker: sufficient I). Consider the following problem:

max
x

f(x)

s.t.

Ax ≥ b

Where f is concave, and continuously differentiable, and A is (m×n) and b is (m×1).
Let x∗ be a feasible solution of this problem. Then x∗ is an optimal solution if and only
if it exists λ ∈ Rm

+ such that:

1. First Order Conditions
∇f(x∗) + ATλ = 0

2. and Complementary Slackness

λT (Ax∗ − b) = 0

Are satisfied.

Proof. the necessary part has already been proven in KKT linear. Let’s see the sufficient
part. We define a function:

h(x) = f(x) + λT (Ax− b)

h(x) is concave because f(·) is concave and this is a linear function. The FOCs are:

∇h(x∗) = ∇f(x∗) + ATλ = 0

Where x∗ is a global max of h(x). This implies:

h(x∗) ≥ h(x)

For all feasible x. Indeed:

f(x∗) = f(x∗) + λT (Ax∗ − b)︸ ︷︷ ︸
= 0 by CS

Therefore:
h(x∗) ≥ h(x)

where:
h(x) = f(x) + λT (Ax− b) ≥ f(x)

for all feasible x, and therefore x∗ is a global max.
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Let’s see some examples now.

Example 14.3.1.

min
x1,x2,x3

1

2
x21 +

1

2
x22 +

1

2
x23

s.t.

x1 + x2 + x3 = 3

Notice that this is a concave function. Then sufficient conditions hold. Taking the
FOCs, we can see that the solution is x1 = x2 = x3 = λ = 1.

Example 14.3.2. Let’s see the following problem:

max
x1,x2

−x21 − 2x22 − 4x1x2

s.t.

x1 + x2 = 1

x1, x2 ≥ 0

The constraints are linear. However, the function is not concave. indeed, the hessian
matrix:

∇2f(x∗) =

[
−2 −4
−4 −2

]
is not negative definite but indefinite. So sufficient conditions cannot apply. Therefore,
we need to check for necessary conditions. Any x∗ which solves the problem must satisfy
the FOCs and the Complementary Slackness conditions. Before finding a solution by
solving the FOCs and the CS, let’s be sure that a solution exists: a solution exists because
the function is continuous and the constraint set is compact (Weierstraß’s theorem). By
KKT (linear), an optimal x∗ must satisfy:

• First Order Conditions

• Complementary Slackness

• Feasibility

Let’s write the Lagrangian function:

L(x1, x2, λ) = −x21 − 2x22 − 4x1x2 + λ[1− x1 − x2] + µ1x1 + µ2x2]

The FOCs are:
∂ L
∂x1

= −2x1 + 4x2 − λ+ µ1 = 0

∂ L
∂x2

= −4x1 − 4x2 − λ+ µ2 = 0
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and the Complementary Slackness are:

µ1x1 = 0

µ2x2 = 0

Notice that we don’t need the complementary slackness condition for λ and the equality
constraint. Indeed, because of the equality, the constraint is already equal to zero and
slackness holds automatically. Complementary Slackness is necessary only when there
is the possibility of slack. Further, we have the feasibility conditions:

x1 + x2 = 1

x1 ≥ 0

x2 ≥ 0

µ1, µ2 ≥ 0

Let’s see case by case. Case 1, µ1, µ2 = 0. Then the FOCs are:

∂ L
∂x1

= −2x1 + 4x2 − λ = 0

∂ L
∂x2

= −4x1 − 4x2 − λ = 0

And x1 + x2 = 1. Solving, it gives: λ = −4, x1 = 0, x2 = 1).
Case 2, µ1, µ2 ≥ 0. In this case, by Complementary Slackness, we have x1, x2 = 0,

which clearly violates x1 + x2 = 1.
Case 3, µ1 > 0 and µ2 = 0. Then we have: x1 = 0 and x2 = 1 (by x1 + x2 = 1).
Case 4, µ1 = 0 and µ2 > 0. Then we have: x1 = 1 and x2 = 0 (by x1 + x2 = 1).

However, for cases 3 and 4 we need to check also the FOCs, in order to exclude negative
multipliers µ1 and µ2. Then, for the case 3:

4− λ+ µ1 = 0

−4− λ = 0

Then λ = −4 and µ1 = 8.
For case 4:

−2− λ = 0

−4− λ+ µ2 = 0

we have λ = −2 and µ2 = 2. Then, multipliers feasibility holds. To find the optimal
x∗ = (x∗1, x

∗
2), we just plug in the objective function. Then:

f(0, 1) = −2 < f(1, 0) = −1

Thus x∗ = (1, 0) is optimal.
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There is a second sufficient condition for KKT Theorem holding.

Theorem 14.3.2 (Karush-Kuhn-Tucker: sufficient II). Let x∗ be a feasible solution of:

max
x

f(x)

s.t

g(x) ≥ 0 ∀i ∈M

gi(x) = 0 ∀i ∈ N

Where f, g are continuously differentiable and concave, and gi are affine functions (lin-
ear). If there λ1, . . . , λm ≥ 0 and µ1, . . . , µn ∈ R such that:

1. First Order Conditions

∇f(x∗) +
m∑
i=1

λi∇g(x∗) +
n∑

i=1

µi∇gi(x∗) = 0

2. Complementary Slackness (just for the inequality constraint)

λi(g(x
∗)) = 0

Then x∗ is a global max.

Proof. Define

h(x) = f(x) +
m∑
i=1

λig(x) +
n∑

i=1

µigi(x)

h(x) is concave because it is the sum of concave functions and ∇h(x∗) = 0 implies
that h(x∗) ≥ h(x) for all feasible x.

Then:

f̃(x∗) = f(x∗) +
m∑
i=1

λi∇g(x∗)︸ ︷︷ ︸
= 0 by CS

+
n∑

i=1

µi∇gi(x∗) = h(x∗)︸ ︷︷ ︸
= 0 by CS

≥

≥ h(x) = f(x) +
m∑
i=1

λig(x)︸ ︷︷ ︸
>0

+
n∑

i=1

µigi(x) > f(x)

Let’s see one example.
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Example 14.3.3. Let’s see the following problem:

max
x1,x2

x1 + x2 − 4x21 − x22

s.t.

2x1 + x2 ≤ 1

x21 ≤ 1

Both the objective function and the constraints are concave. Besides, we have only
inequality constraints, so we don’t need to check for linearity of equality constraints.
We can apply KKT ST2. Further, since Slater conditions hold too, KKT ST2 is both
necessary and sufficient.

Let’s solve the Lagrangian:

L = x1 + x2 − 4x21 − x22 + λ1(1− x2 − 2x1) + λ2(1− x2)

The KKT conditions are:

∂ L
∂x1

= 1− 8x1 − 2λ1 − 2λ2x1 = 0

∂ L
∂x2

= 2− 2x2 − λ1 = 0

The Complementary Slackness

λ1(1− 2x1 − x2) = 0

λ2(1− x2) = 0

The feasibility conditions for the Primal

2x1 + x2 ≤ 1

x12 ≤ 1

The feasibility of the dual:
λ1, λ2 ≥ 0

We have 4 cases.

1. Case 1. λ1 = λ2 = 0, all constraints are slack. So we have:

8x1 − 1 = 0 ⇒ x1 =
1

8

2x2 − 2 = 0 ⇒ x2 = 1

But then:
2
1

8
+ 1 ≥ 1

Feasibility is violated.
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2. λ1, λ2 > 0, all constraints bind. Then:

2x1 + x2 = 1

x2 = 1

and:
x1 = 1 x2 = −1

x2 = −1 x2 = 3

Plug (1,−1) into the FOCs:

1− 8x1 − 2λ1 − 2λ2x1 = 0

2λ1 − 2λ2 = −7

But this is not possible, since λ1, λ2 ≥ 0. Plug (−1, 3) into:

2− 2x2 − λ1 = 0

then λ = −4. Again, this is not possible

3. λ1 > 0, λ2 = 0. From Complementary Slackness, the first constraint binds. Solv-
ing the FOCs, we have the following possible solutions:

x1 =
1
16

x2 =
7
8

λ1 =
1
4

λ2 = 0

This can be a solution. Let’s see the last case.

4. λ1 = 0, λ2 > 0. The second constraint binds. Then:

1− x2 ⇒ x = ±1

From the second FOCs:
2− 2x2 = 0 ⇒ x2 = 1

But by plugging (−1, 1) into the first FOCs, we have:

λ1 = −9

2

Plugging (1, 1) into the feasibility constraint:

2 · 1 + 1 > 1

So this is violated.
Therefore, the unique solution to this problem is:

x1 =
1
16

x2 =
7
8

λ1 =
1
4

λ2 = 0
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14.4 Duality in Non-Linear Programming

So far we have seen the following problem (primal):

VP = max
x

∈ R+f(x)

s.t
g(x) ≥ 0

But recall that when dealing with linear optimization, the idea of duality was intro-
duced. This simply provided a possibly simpler way to solve an optimization problem,
namely by reducing the number of constraints. The same idea applies in the case of
non-linear optimization. The idea, in a nutshell, is that of introducing a "penalty" if
the optimality conditions are violated.

From the Lagrangian:

L(x, λ, µ) = f(x) +
m∑
i=1

λig(x) + µm
i g(x)

we can define the dual function as follows:

q(λ, µ) = max
x∈R

L(x, λ, µ)

where λ ∈ Rm, µ ∈ Rn. Notice that this is an unconstrained optimization. Suppose
that you violate the constraints so that g(x) ≤ 0 or g(x) ̸= 0. This is why we need λ, µ.
Furthermore, q(λ, µ) is convex, and we can define its domain as follows:

Dom(q) =
{
(λ, µ) ∈ Rm × Rn : q(λ, µ) <∞

}
Therefore, we can define the dual problem:

VD = min q(λ, µ)

s.t.
(λ, µ) ∈ Dom(q)

Why the constraints will bind the dual problem? The idea is the dual problem must
provide an upper bound to the primal problem. Namely, fixing λ, µ, then for all x ∈ F ,
f(x) +

∑n
i=1 λig(x) +

∑n
i=1 g(x) ≥ f(x). If we take the max on the left-hand-side, we

have:

max
x∈Rn

f(x) +
n∑

i=1

λig(x) +
n∑

i=1

µg(x) ≥ f(x) ≥

≥ max
x∈F

L(x, λ, µ) ≥ max
x∈F

f(x) = VP

This holds for all possible (λ, µ). So we need to choose λ, µ such that:

VD = min
λ,µ∈Dom(q)

q(λ, µ) ≥ VP

Let’s see the following important results.
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• Weak Duality: VP ≤ VD

• Strong Duality: if, in the primal, the objective function and the non-linear con-
straints are concave, the linear constraint is affine, and, finally the primal problem
has a finite value, then the dual is also finite and VD = VP .

Before offering a formal description of these results, and their proofs, let’s see some
examples.

Example 14.4.1.
VP = max−x21 − x22 − 2x1

x1 + x2 = 0

The value of the primal is x∗ =
(
− 1

2
, 1
2

)
VP = 1

2
. Let’s solve the dual problem:

L(x, λ) = −x21 − x22 − 2x1 + λ(−x1 − x2)

Solving for the dual function, we have:

q(λ) = max
x

L(x, λ) = −x21 − x22 − 2x1 + λ(−x1 − x2)

Taking the FOCs:
∂ L
∂x1

= −2x1 − 2− λ = 0 ⇒ x1 = −λ
2
− 1

∂ L
∂x2

= −2x2 − λ = 0 ⇒ x2 = −λ
2

Therefore:

q(λ) = −
(
− λ

2
− 1

)2

−
(
− λ

2

)2

− 2
(λ
2
− 1

)
Which can be simplified as:

q(λ) =
λ2

4
− λ+ 1 +

λ2

4
− 2λ− 2 =

λ2

2
+ λ+ 1

This is the dual function. So the dual problem is:

VD min
λ∈Dom(q)

=
λ2

2
+ λ+ 1

Therefore λ∗ = −1 and the solution to the dual problem is:

VD ⇒ −12

2
− 1 + 1 =

1

2
= VP
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Example 14.4.2.
VP = max cTx

s.t.

Ax ≤ b

x ≥ 0

The dual can be written as:

q(λ, µ) =max
x

[
cTx+ λT (b− Ax) + µTx

]
=

max
[
λT b+ (cT − λTA+ µT )x

]
The objective function is linear so:

x∗ =

{
+∞ if cT − λTA+ µT ̸= 0

λT b if cT − λTA+ µT = 0

The domain of the dual function is:

Dom(q) =
{
(λ, µ) : cT − λTA+ µT = 0

}
The dual problem is:

VD = min q(λ, µ)

s.t

(λ, µ) ∈ Dom(q)

This can be written as:
minλT b

s.t

cT = λTA− µT

But if we get rid of µ (and we can since µ > 0), we have:

minλT b

s.t

cT ≤ λTA

λ ≥ 0

This is the statement of the dual in linear programming.

Let’s see now the Strong Duality Theorem.
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Theorem 14.4.1 (Strong Duality Theorem). If

1. f, gi,∀i ∈M are concave

2. gi, i ∈ N are affine.

3. it exists x ∈ F such that f i(x) > 0,∀i ∈M

Then VP = VD, where VD is the solution to the dual problem:

VD = min
λ,µ

q(λ, µ) = min
[
maxL(x, λ, µ)

]
s.t.

(λ, µ) ∈ Dom(q)

Before seeing the proof of this theorem, let’s see the following lemma.

Lemma 14.4.2. Under the conditions of the Strong Duality Theorem, let c ∈ R, then
the following are equivalent:

1. x ∈ Rn, gi(x) ≥ 0, ∀i ∈M , gi(x)∀i ∈ N , then f(x) ≤ c

2. It exists a λ ∈ RM
+ and µ ∈ RN such that:

g(λ, µ) = max
{
f(x) +

M∑
i=1

λigi(x) +
N∑
i=1

gi(x)
}
≤ c

This lemma states that if x is feasible (1) for a primal problem, then c is an upper
bound to the primal problem. Then, we can always find (λ, µ) such that the dual
problem can achieve values ≤ c. Roughly speaking, if the primal problem is bounded
by c, the dual problem takes values less than c. Further, the strong duality holds.

VP

VD
c

x, λ x, λ

Figure 14.1: Duality
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In the figure on the left, we see that the primal achieves a maximum value that
is less than c. c is the upper bound of the dual, but cannot be achieved by that. In
other words, there is a duality gap. Therefore, the only possible case is when the two
problems achieve the same value, as depicted in the figure on the right.

Let’s see the proof of the lemma and then that of the Strong Duality Theorem.

Proof of the Lemma. Let’s see 2) ⇒ 1). If it exists (λ, µ) such that:

max
x

{
f(x) +

{
f(x) +

M∑
i=1

λigi(x) +
N∑
i=1

gi(x)
}
≤ c

Then, we can take x̂ ∈ F , and therefore:

f(x̂)
M∑
i=1

λigi(x̂)︸ ︷︷ ︸
≥ 0

+
N∑
i=1

gi(x̂)︸ ︷︷ ︸
= 0

≤ c

Therefore f(x̂) ≤ c.
Let’s see now 1) ⇒ 2). Assume for simplicity that N ̸= ∅. We want to show that if

c is an upper bound of the primal, then it can be achieved by the dual. Define:

S =
{
u = (u0, u1, u2, . . . , um) : it exists x ∈ Rn, s.t. f(x) ≥ u0, gi(x) ≥ ui,∀i ∈M

}
Define further:

T =
{
u = u= ≥ c, u1 ≥ 0, . . . , un > 0

}
such that S, T are not empty and convex. Convex because S is the intersection of
the subgraphs of concave functions (which is, the intersection of convex sets is convex
itself). Furthermore, their intersection is empty. Therefore, we can apply the Separating
Hyperplane Theorem. It exists a = (a0, a1, . . . , am) ̸= 0 that separates S and T such
that:

min
u∈S

a · u ≥ sup
u∈T

a · u (14.7)

(we use sup instead of max because T is not a closed set). We can claim that
(a0, a1, ·, am) < 0. Suppose not, then ai > 0. We can let ui → ∞ so that the righthand-
side above is +∞. But this contradicts S being not empty and therefore finite. So, the
right-hand-side of (14.7) is a0 · c. We want to show that a0 ̸= 0. Suppose not, then
a0 = 0. We have:

min
u∈S

a · u = min
u∈S

m∑
i=1

ai · ui

Let ui = f(x0), where x0 satisfies Slater conditions. So ui > 0 implies
∑m

i=1 ai · ui < 0.
Then the left-hand side of (14.7) is less than 0, and the right-hand side equals 0. We
have reached a contradiction. Then a0 ̸= 0.
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We can write:
min
u∈S

u · u ≥ a0 · c

This implies that:
max
u∈S

a

a0
· u ≤ c

Let λi = a
a0

≥ 0 ∀i ∈M . Then:

max
[
u0 +

m∑
i=1

λi · ui
]
≤ c

Proof of the Strong Duality Theorem. Define the set Ŝ as:

Ŝ =
{
u = (u0, u1, ·, un) : f(x) = u0, fi(x) = ui,∀i ∈M

}
Then Ŝ ⊂ S. This implies that:

max
λ∈Ŝ

[
u0 +

n∑
i=1

λiui

]
≤ max

u∈S

[
u0 +

m∑
i=1

λiui

]
And:

max
x

[
f(x) +

n∑
i=1

λigi(x)
]
≤ c

Therefore, it exists a λ such that min q(λ) ≤ c.
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Chapter 15

Some Elements of Dynamic
Programming

So far, we have considered a series of problems that do not involve time. However,
especially when dealing with choices, what people do at a certain moment influences
what comes after. Therefore, an agent must solve a sequential problem to find the
sequence of values that optimize a function for a potentially infinite period of time,
where at each time period, the function remains the same, but at the same time, the
optimal value is influenced by choices made before. In other words, an optimal solution
for an optimization problem must be optimal for all the periods t, with, in the most
general case, t→ ∞.

The way of solving these types of problems is through a recursive approach, using
Dynamic Programming. This chapter will be divided into two sections: the first will
present a recap of some results concerning the continuity of correspondences, useful to
establish some useful results, namely three fixed point theorems; in the second section,
the main aspects of Dynamic Programming will be discussed.

15.1 Some Fixed Point Theorems

To establish the existence of some important results in economics, a technique often
used is that of using a fixed point theorem, namely to show that a value of x such that

f(x∗) = x∗

exist. This, in general, can be done for any mapping, not only functions. Therefore,
before discussing the three most important fixed point results used in economics, namely
the Brouwer Fixed Point Theorem, the Kakutani Fixed Point Theorem, and
the Banach Fixed Point Theorem, a recap of the notion of correspondences and
continuity is needed.

Definition 15.1.1. Consider X ⊆ Rn and Y ⊆ Rn. A correspondence Γ : X ⇒ Y
is a set-valued mapping from X into 2Y \ ∅.
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x

y

Figure 15.1: A non-convex valued correspondence

Let’s see some examples:

Example 15.1.1. An example in economics is that of budget sets. For any n ∈ N, p ∈
Rn

++, and w ∈ R++, we define Bp,w as:

Bp,w =
{
x ∈ Rn : p · x ≤ w

}
This is a correspondence. Indeed it can be written as:

Bp,w : Rm
++ ⇒ 2R

n
+ \ ∅

A correspondence can have different characterizations.

Definition 15.1.2. A correspondence is:

1. Single-valued at x if Γ(x) is a singleton

2. Closed-valued at x if Γ(x) is a closed set

3. Compact-valued at x if Γ(x) is compact

4. Convex-valued at x if Γ(x) is a convex set

Recall that a very important feature of functions is their continuity. Functions are
a special kind of correspondence. However, to define the continuity of correspondences,
we need a more complicated idea, resting upon the notions of upper and lower hemi-
continuity.

Definition 15.1.3. A correspondence Γ : X ⇒ Y is upper hemi-continuous at x
is for all open subsets O ⊆ Y , with O ⊇ Γ(x), there exists some ϵ > 0 such that
Γ(Nϵ(x) ∩X) ⊆ O (the image of the ϵ−neighborhood is also in O).

Γ is upper hemi-continuous on S ⊂ X, if it is upper hemi-continuous for all x ∈ S.
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The basic idea is that a small perturbation of x does not change its image "a lot,"
namely, it does not suddenly expand. Then, we have the following result.

Proposition 16. Γ is upper hemi-continuous at x if, for any sequence {xn} and {yn} ⊂
Y with xn → x and yn ∈ Γ(xn) for each n, there exists a subsequence of {yn} that
converges to a point in Γ(x). If Γ is compact-valued, then the converse is also true.

Graphically:

x

y

x1

y1

yn

Figure 15.2: A upper hemi-continuous correspondence

Since the graph is closed, any sequence into Γ(x) converges inside Γ(x).
A related concept is the closed graph property,

Definition 15.1.4. The graph of Γ is:

Gr(Γ) =
{
(x, y) ∈ X × Y : y ∈ Γ(x)

}
Γ has the closed graph property if the graph is closed.

x

y

(a) Closed graph

x

y

(b) Non-closed graph

Using this property, we have a simpler characterization of upper hemi-continuity.
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Proposition 17. Let Γ : X ⇒ Y be a correspondence. If Γ has the closed graph and
Y is compact, then it is upper hemi-continuous (sufficient condition). Further, if Γ is
upper hemi-continuous and closed-valued, then it has a close graph.

However, some examples show that we can have the closed-graph property but not
upper hemi-continuity.

Example 15.1.2. Let’s see a first example. Take the function:

Γ(x) =

{
1
x

for x ∈ [0, 1]

{0} for x = 0

The graph of this function is closed, but not upper hemi-continuos, since it is not com-
pact (it is not bounded). Notice, however, that even without applying the definition, it
is clear that this cannot be upper hemi-continuous since the function is not continuous.

A second example is the correspondence Γ(x) = (0.5, 1.5). This is upper hemi-
continuous since it is a constant mapping, but the graph is not closed.

x

y

(a) Closed graph but not u.h.c.

x

y

(b) Non-closed graph but u.h.c.

A related definition is that of lower hemi-continuity.

Definition 15.1.5. A correspondence is lower hemi-continuous if for all open sets
O ⊂ Y with Γ(x) ∩ O ̸=, then there exists some ϵ > 0 such that Γ(x′) ∪ O ̸= ∅ for all
x′ ∈ Nϵ(x) ∩X.

In the single-valued case, Γ(x) ∪ O ̸= ∅ just means inclusion. The general idea of
Lower Hemi-continuity is that the image of the neighboring points to x must not go
"too far away" from Γ(x).

As in the case of u.h.c., we can have a sequential characterization for lower hemi-
continuity.

Proposition 18. Γ is lower hemi-continuous at x ∈ X if and only if, for all {xn} ⊂ X,
with xn → x, and y ∈ Γ(x), then, there exists yn ∈ Y , such that yn → y and yn ∈ Γ(xn)
for each n.

A graphical example:
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x

Γ(x)

yn

x

y

xn

(a) not l.h.c. correspondence

x

Γ(x)

y0

x0

(b) l.h.c. correspondence

In the second figure, we can construct a sequence converging toward x0. Take for
instance yn = y0, and y ∈ Γ(x0), then y = yn.

Given the definition of u.h.c. and l.h.c., we can now define the continuity for corre-
spondences.

Definition 15.1.6. A correspondence Γ : X ⇒ Y is continuous at x if it is both
upper hemi-continuous and lower hemi-continuous.

Let’s see a further example.

Example 15.1.3. Recall that we have defined the budget set as a correspondence.

Bp,w =
{
x ∈ Rn : p · x ≤ w

}
With p ≫ 0, w > 0. Now, we want to show that the budget set is continuous. the first
step is to show that Bp,w is upper hemi-continuous. We use sequential characterization.
We want to show that for any (pn, wn) ∈ Bp,w → (p, w) and xn ∈ B(pn, wn) for each
n. Then, there exists a convergent subsequence {xnk

} → x, where x ∈ Bpn,wn. Let
pi = inf{pn} and w̄ = sup{wn}. Then Bpn,wn ⊂ Bpi,w̄

and {xn} ∈ Bpi,w̄
so there must

be a convergent subsequence {xnk
} → x. Further, pnk

· xnk
≤ wnk

, pnk
, wnk

→ p, w and
xnk

→ x. Then p · x ≤ w, since the inequality is preserved in the limit, and x ∈ Bp,w.
So Bp,w is upper hemi-continuous.

Let’s see lower hemi-continuity now. We want to show that, for all (pn, wn) → (p, w)
and x ∈ Bp,w, there exists xn ∈ Bpn,wn such that xn → x. If x = 0, let xn = 0,∀n. If
x ̸= 0, define:

xn =
wn

w
· p · x
pn · x

· x

multiplying by −pn, we have:

−pn · xn =
wn

w
· p · x
pn · x

· −pnx

and then pn = wn · p·x
w

≤ wn. xn ∈ Bpn,wn ,∀n, and therefore xn → x, so Bp,w is lower
hemi-continuous. Since Bp,w is l.h.c and u.h.c., then it is continuous.
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Continuity of correspondences is necessary to prove an important result, which will
be useful in establishing key results in Dynamic Programming, other than in economics,
namely Berge’s Maximum Theorem.

Theorem 15.1.1. Let Θ ⊂ Rn and X ⊆ Rn, and:

Γ : Θ ⇒ X

be a compact-valued correspondence, and φ ∈ C(X × Θ) ( namely, it is a continuous
function on X × Θ). Further, define σ(θ) = argmaxθ

{
φ(x, θ) : x ∈ Γ(θ)

}
, ∀θ ∈ Θ,

and φ∗(θ) = maxθ
{
φ(x, θ) : x ∈ Γ(θ)

}
, ∀θ ∈ Θ.

If Γ is continuous at some θ ∈ Θ, then:

1. σ : Θ ⇒ X is upper hemi-continuous and compact-valued

2. φ∗ : Θ → R is continuous.

Example 15.1.4. Let’s see the Demand Correspondence. Define Θ = Rn
++ × R++ :

(p, w) ∈ Θ in other words, Θ is the space of parameters (p, w). X is the commodity
space. φ(x, θ) is the utility function u(x), Γ(θ) is the Budget correspondence. We
know that x∗(p, w) (the Marshallian demand) be argmax{u(x) : x ∈ Bp,w} ≡ σ(θ)
(in the notation used above), and v(p, w) (the indirect utility function) be max{u(x) :
x ∈ Bp,w} ≡ φ∗(θ). Further, we have seen that Bp,w is continuous. If u(x) is also
continuous, then, from the maximum theorem, x∗(p, w) is upper hemi-continuous and
compact-valued, v(p, w) is continuous. If x∗(p, w) is a function, then it is continuous,
and if u(x) is strictly quasi-concave, then x∗(p, w) is a function.

We can finally present some Fixed Point Theorems. The first is the Contraction
Mapping Theorem, also known as the Banach Fixed Point Theorem. Let’s start with
a definition of contraction mapping.

Definition 15.1.7. A function f : S → S is a contraction mapping if d(f(x), f(y)) <
βd(x, y) for some fixed β ∈ [0, 1), for all x, y ∈ S.

Example 15.1.5. Let’s take a function f(x) = 1
2
x. This is a contraction mapping, as

apparent from the figure 15.6, with β = 1
2
.

Let’s see the following result.

Theorem 15.1.2 (Banach Fixed Point Theorem). Let S ⊆ Rn be closed and f : S → S
be a contraction mapping. Then there exists a unique fixed point f(x) = x

Proof. Choose any x0 ∈ S. Let xn = f(xn−1). If xn → x∗, then x+ ∈ S and x∗ = f(x∗).
This is because S is closed, so it contains the limit. Furthermore, x∗ is a fixed point
because f(·) is continuity. But how do we know that f(·) is continuous? A contraction is
always continuous. To see this take a sequence |f(x)−f(y)| ≤ θ|x−y|. If |x−y| is very
small, also |f(x)−f(y)| becomes very small. Take k ∈ R+. This still implies continuity
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x

y

f(x) = 1
2
x

d(x, y)

d(f(x), f(y))

Figure 15.6: A contraction mapping

(Lipschitz continuity). We want to show that xn converges. To do so, we must show
that {xn} is a Cauchy Sequence. Then, since any Cauchy Sequence converges, {xn}
converges too. By definition of Cauchy Sequence, take m,n > M, ϵ > 0, such that
|xm − xn| < ϵ. Suppose m > n. Then:

|xm − xn| ≤
m∑
k=1

−1|xk+1 − xk|

Notice that
|xk+1 − xk| = |f(xk)− f(xk−1)| ≤ θ|xn − xn−1|
· · · ≤ θn|x1 − x0|

(15.1)

Therefore θn|x1 − x0| is a bound for |xm − xn|, so:

|xm − xn| ≤
n−1∑
k=1

|xk+1 − xk| ≤ |x1 − x0|
θn

1− θ

So {xn} is a Cauchy Sequence, and then it is a fixed point in the limit. Since the limit
is unique, then also the fixed point is unique.

To get the main intuition behind this result (in R2), see the figure 15.7.
Start with x0. Then f(x0) = x1. Then, from f(x1), we obtain x2. From x2, we

have f(x2) = x3. And so on, until we reach the fixed point f(x∗) = x∗ (follow the red
arrow in the graph). In this example, we have assumed x0 > x∗. The same intuition
for x0 < x∗. In other words, this result shows that we can find a fixed point by doing
iteration x0, f(x0), f(f(x0)) and so on...

A suggestive example of Contraction Mapping is that of imagining a geographical
map of North Carolina. Suppose you can display the map on the floor of the Garner
Hall. Then there is a point on the map (no matter how infinitesimal), which also
corresponds to the point where the map has been actually displayed.
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x

y

x1

f(x∗)

x∗ x0x2

x3

Figure 15.7: A contraction mapping and a fixed point

Two other fixed point results used by economists do not involve contraction map-
pings but just continuity, compactness, and convexity of the domain. These are the
Brouwer Fixed Point Theorem and the Kakutani Fixed Point Theorem.

Theorem 15.1.3 (Brouwer Fixed Point Theorem). Let S ⊆ Rn be compact, convex
and f : S → S be a continuous function. Then there exists a fixed point x∗ ∈ S such
that f(x∗) = x∗.

Notice that in this case, contrary to the Contraction Mapping, the fixed point is not
unique. The trivial example is given by the function f(x) = x, which is entirely made
up of infinite fixed points.

Let’s see the following examples when the theorem fails.

Example 15.1.6. See f(x) = x
2
, where f : (0, 1) → (0, 1). Notice that this function

maps its domain into itself. However, a fixed point does not exist because (0, 1) is not
compact (it is not closed).

Take another example, the function f : [0, 1] → [0, 1]:

f(x) =


1 if x = 0
x
2

if x ∈ (0, 1)

0 if x = 1

The domain of this function is compact. However, the function is not continuous, so a
fixed point does not exist.

This theorem can be used to prove a famous result in Linear Algebra, namely the
Perron-Frobenius theorem.

Theorem 15.1.4. Any matrix A≫ 0 has a positive eigenvalue and eigenvector.
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Proof. Define the simplex:

S = {x ∈ Rn
+ :

∑
i

xi = 1} ≡ ∆

and the function f : S → S as:

f(x) =
Ax∑
iAx

f is continuos and S is compact. So that it exists a fixed point x∗ such that:

f(x∗) =
Ax∗∑
i(Ax

∗

Rearranging, we can write:
Ax∗ =

∑
i

(Ax∗)x∗

Notice that
∑

i(A(x
∗)) is a number, so we can define it as λ. Therefore Ax∗ = λx∗, and

this is the characteristic equation, where x∗ is an eigenvector and λ is the eigenvalue.
Furthermore, both x∗ and λ are positive.

This result should not be a surprise since an eigenvector associated with an eigen-
value λ = 1 is a fixed point. indeed:

Ax = λ︸︷︷︸
= 1

x

The third fixed point theorem we present is the Kakutani’s Theorem.

Theorem 15.1.5 (Kakutani Fixed Point Theorem). Let S ⊆ Rn be a compact and con-
vex set. Let Γ : S ⇒ S be an upper hemi-continuous and convex-valued correspondence.
Then there exists X ∈ S such that x∗ ∈ Γ(x∗)

With these results, we can now formally treat Dynamic Programming.

15.2 Dynamic Programming

A problem of programming along an infinite temporal horizon can be written as follows:

max
{xn}∞n

φ(x0, x1) +
∞∑
i=1

δiφ(xi, xi+1)

s.t.

xi+1 ∈ Γ(x) i = 0, 1, . . .

133



Where x0 is the initial state, and xi ∈ X, X is the state space, most often assumed to
be X = R. Γ(x) is the transition correspondence that describes which states are
possible tomorrow, given the state of the system today.

A feasible plan is a sequence of states {xi} ⊂ X such that x1 ∈ Γ(x0), x2 ∈
Γ(x1), . . . . Instead, δ ∈ (0, 1) is a discount factor.

The main difference with non-linear programming is that we are operating in an
infinite horizon. Namely, we must choose an infinite dimension vector {xn}∞n=1 that is
made up of states that maximize the objective function at each period.

There are several assumptions regarding the structure of the problem.

Definition 15.2.1. The main assumptions are:

A.1 For any feasible plan {xi}, we have:

lim
t→∞

k∑
i=1

φ(xi, xi+1) ∈ R̄

A.2 φ is continuous and bounded

A.3 Γ is compact-valued and continuous

Assumption 1 states that for any feasible plan, the solution of the problem either
diverges or converges. It rules out oscillations.

We can further define the total objective function as:

F ({xi}, x) = φ(x, xi) +
∞∑
i=1

δiφ(xi, xi+1)

and the set of feasible plans as:

Ω(x) =
{
(xi) ∈ X∞ : xi ∈ Γ(x) and xi+1 ∈ Γ(xi), i = 1, 2, . . .

}
The value function can be written as:

V (x) = sup
{
F ({xi}∞i=1, x) : {xi} ∈ Ω(x)

}
Since we are in an infinite horizon, we are interested in knowing if a solution exists.
To tackle this problem, we use an iterative approach. The problem is transformed into
a recursive problem. Recursive means that we want to summarize the future as a
value function of tomorrow, and therefore the infinite horizon problem is transformed
into a two-period problem: today and "tomorrow" (the future). We can write:

V (xi) = xi + V (xi+1, xi)

We have the following lemma:
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Lemma 15.2.1. Given x0 (the initial value), V (x0) = F ({x∗n}, x0) (namely {x∗n} solves
the optimization problem) if and only if:

V (x0) = φ(x0, x
∗
i ) + δV (x∗1)

and
V (x∗n) = φ(x∗n, x

∗
n+1) + δV (x∗n+1) ∀n = 1, 2, . . .

Proof. (⇐) If {xn}∞n=1 ⇒ recursive optimality, then we can write:

V (x0) =F ({xn}∞n=1, x0) =

φ(x0, x
∗
1) +

∞∑
i=1

δiφ(x∗i , x
∗
i+1) ≥

φ(x0, x1) +
∞∑
i=1

δiφ(xi, xi+1) ∀{xi} ∈ Ω(x)

So, we can take the next period {x2, x3, . . . } ∈ Ω(x∗i ):

φ(x0, x
∗
1) + δφ(x∗1, x

∗
2) +

∞∑
i=1

φ(x∗i , x
∗
i+1) ≥

φ(x0, x
∗
1) + δφ(x∗1, x2) +

∞∑
i=1

φ(xi, xi+1)

We can cancel the first terms at right and left, and we have:

φ(x∗1, x
∗
2) +

∞∑
i=1

φ(x∗i , x
∗
i+1) ≥ φ(x∗1, x2) +

∞∑
i=1

φ(xi, xi+1)

Then, the left hand-side is V (x∗) and V (x0) = φ(x0, x
∗
1) + δV (x∗i ).

(⇒) Let’s write:

V (x0) =φ(x0, x
∗
i ) + δV (x∗i ) =

φ(x0, x
∗
i ) + δφ(x∗1, x2) + δ2V (x∗2) =

. . .

φ(x0, x
∗
i ) +

k∑
i=1

δiφ(x∗i , x
∗
i+1) + δk+1V (x∗i+1)

Since the problem is bounded (Assumption 2), then δkV → 0.Therefore:

V (x0) = F ({x∗i }, x0)
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This lemma says that once you have an optimal solution, this has a recursive struc-
ture. You can summarize tomorrow’s continuation value using today’s optimal value.

Another Lemma is the principle of optimality, which tells how to find the value
function.

Lemma 15.2.2. For any function W ∈ B(X) (where B is the set of bounded functions
on X = R), we have:

W (x) = max
{
φ(x, y) + δW (y) : y ∈ Γ(x)

}
∀x ∈ X

Then we have:

W (x) = max
{
F ({xi}, x) : {xi} ∈ Ω(x)

}
∀x ∈ X

Proof. For all {xi} ∈ Ω(x), we have:

W (x) ≥ φ(x, x1) + δW (x1) ≥
φ(x, x1) + δ [φ(x1, x2) + δ2W (x2)]︸ ︷︷ ︸

W (x1)

≥

. . .

φ(x, x1) +
k∑

i=1

δiφ(xi, xi+1) + δk+1W (xi+1)

Since W is bounded, as k → ∞, the last term of the right hand-side disappears. So we
have:

W (x) = F ({x∗i }, x)

W (x) is also called Bellman Equation.
The next question to be tackled is that of the existence of a solution.

Theorem 15.2.3 (Existence of a solution). Under assumptions A1− A3, there exists
a solution to the dynamic programming problem

Proof. The basic idea of the proof is that if we find a value function, then the optimal
solution exists. Define a mapping:

Φ : CB(x) → Rx

where CB(x) is the set of all continuous and bounded functions.

Φ(w)(x) = max
{
φ(x, y) + δW (y) : y ∈ Γ(x)

}
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For this function, Φ(w)(xi), φ(·),W (·) are continuous (Φ(·) by Maximum’s theorem).
Besides, it is also bounded so that:

Φ(w) : CB(x) → CB(x)

If exists a w∗ such that Φ(w∗) = w∗, then w∗ is the value function. So, we want to
show that Φ(·) has a fixed point. We use the Banach Fixed Point Theorem (in a more
general version, on any metric space, not just Euclidean). But before, we need to show
that Φ(·) is a contraction. Therefore we need the following lemma.

Lemma 15.2.4 (Blackwell’s sufficient conditions for a contraction). Suppose Φ(cdot)
is a mapping into itself. Then, if:

1. Φ(w) ≥ Φ(w′), for all w ≥ w′ (monotonicity)

2. it exists a delta ∈ (0, 1) such that Φ(w + α) ≤ Φ(w) + δα (discounting)

Then, Φ(·) is a contraction.

Φ(·) is monotonic in w, and can be bounded by a δ, so Φ(·) is a contraction. Then,
by the Banach Fixed Point Theorem, it exists a w∗ such that Φ(w∗) = w∗ ∈ CB(x).

The problem has a solution.

So far, we have shown:

• the structure of optimal solution (namely that they are recursive), and optimal
values (the Bellman equation)

• the existence of an optimal solution

We need to know how to find a solution. That is, to find an optimal policy. Given
the existence of a solution, we can construct an optimal solution correspondence:

P (x) = argmax
y

{
φ(x, y) + δV (y) : y ∈ Γ(x)

}
we know that {x∗i } must satisfy:

x∗1 ∈ P (x∗0), x∗2 ∈ P (x∗1) . . . and so on...

If we know the value function, we can find a solution. Indeed, the value function is
smooth, so we can take the derivative.

We also want to determine if the solution is unique. Let’s make a further assumption
(A4), namely that Gr(Γ) is convex and φ(·) is strictly concave on Gr(Γ). Then, we
have the following theorem:

Theorem 15.2.5. (Uniqueness) Let X ⊆ Rn be a non-empty and convex set. Under
assumptions A1− A4, the dynamic programming problem has a unique solution.

137


	Sets
	Sets: operations
	Binary Relations

	Numbers
	Natural Numbers
	Integers and Rational Numbers
	Real Numbers

	Functions
	Cardinality
	Some elements of Linear Algebra
	Matrices
	Linear Equations

	Sequences
	Metric Spaces
	Sequences
	Contraction Mapping Theorem

	Topology: some elements
	Continuity
	Continuity of correspondences

	Differentiation
	Differentiation with One Variable
	Differentiation with many variables
	Homogeneity
	Implicit Function Theorem


	Concave Functions
	Convex sets
	Concave Functions
	Quasi-Concave Functions

	Optimization I
	Unconstrained Optimization
	Optimization with Equality Constraints
	Optimization with Inequality Constraints
	Envelope Theorem

	Concave Optimization
	Quasi-Concave Programming


	Convexity
	The Farkas' Lemma

	Linear Programming
	Duality

	Non-Linear Programming
	Constrained Optimization
	Constrained Optimization: necessary conditions
	Constrained Optimization: sufficient conditions
	Duality in Non-Linear Programming

	Some Elements of Dynamic Programming
	Some Fixed Point Theorems
	Dynamic Programming


